Chứng minh rằng sự tồn tại của số tn n sao cho 2024n - 1 chia hết cho 10^2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác MNPQ ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}+\widehat{Q}=360^o\) (tổng các góc trong tam giác)\
\(\widehat{M}:\widehat{N}:\widehat{P}:\widehat{Q}=1:2:3:4\\ =>\dfrac{\widehat{M}}{1}=\dfrac{\widehat{N}}{2}=\dfrac{\widehat{P}}{3}=\dfrac{\widehat{Q}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{M}}{1}=\dfrac{\widehat{N}}{2}=\dfrac{\widehat{P}}{3}=\dfrac{\widehat{Q}}{4}=\dfrac{\widehat{M}+\widehat{N}+\widehat{Q}+\widehat{Q}}{1+2+3+4}=\dfrac{360^o}{10}=36^o\\ =>\widehat{M}=36^o\\ =>\dfrac{\widehat{N}}{2}=36^o=>\widehat{N}=72^o\\ =>\dfrac{\widehat{P}}{3}=36^o=>\widehat{P}=108^o\\ =>\dfrac{\widehat{Q}}{4}=36^o=>\widehat{Q}=144^o\)
Vì: \(\widehat{M}+\widehat{Q}=36^o+144^o=180^o\) => MN//PQ => MNPQ là hình thang
\(5,8a^3\left(a-b\right)-27\left(a-b\right)\\ =\left(a-b\right)\left(8a^3-27\right)\\ =\left(a-b\right)\left(2a-3\right)\left(4a^2+6a+9\right)\\ 6,27\left(a+b\right)-a^3\left(a+b\right)\\ =\left(a+b\right)\left(27-a^3\right)\\ =\left(a+b\right)\left(3-a\right)\left(9+3a+a^2\right)\\ 7,8a^3\left(2a-3b\right)+27\left(2a-3b\right)\\ =\left(2a-3b\right)\left(8a^3+27\right)\\ =\left(2a-3b\right)\left(2a+3\right)\left(4a^2-6a+9\right)\)
\(a,A=x^2+y^2+2x-6y-2\\ =\left(x^2+2x+1\right)+\left(y^2-6y+9\right)-12\\ =\left(x+1\right)^2+\left(y-3\right)^2-12\)
Ta có:
`(x+1)^2>=0` với mọi x
`(y-3)^2>=0` với mọi y
`=>A=(x+1)^2+(y-3)^2-12>=-12` với mọi x,y
Dấu "=" xảy ra: `x+1=0` và `y-3=0`
`<=>x=-1` và `y=3`
\(b,B=5x^2+y^2+z^2+4xy+2xz\\ =\left(4x^2+4xy+y^2\right)+\left(x^2+2xz+z^2\right)\\ =\left(2x+y\right)^2+\left(x+z\right)^2\)
Ta có:
`(2x+y)^2>=0` với mọi x,y
`(x+z)^2>=0` với mọi x,z
`=>B=(2x+y)^2+(x+z)^2>=0`
Dấu "=" xảy ra: `2x+y=0` và `x+z=0`
`<=>2x=-y=-2z`
\(c,C=2x^2+y^2+2xy-8x+2024\\ =\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2008\\ =\left(x+y\right)^2+\left(x-4\right)^2+2008\)
Ta có:
`(x+y)^2>=0` với mọi x,y
`(x-4)^2>=0` với mọi x
`=>C=(x+y)^2+(x-4)^2+2008>=2008`
Dấu "=" xảy ra:
`x+y=0` và `x-4=0`
`<=>x=4` và `y=-4`
\(d,D=x^2-2xy+3y^2-2x+1997\\ =\left(x^2+y^2+1-2xy-2x+2y\right)+\left(2y^2-2y+\dfrac{1}{2}\right)+\dfrac{3991}{2}\\ =\left(-x+y+1\right)^2+2\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3991}{2}\\ =\left(-x+y+1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{3991}{2}\)
Ta có:
`(-x+y+1)^2>=0` với mọi x,y
`2(y-1/2)^2>=0` với mọi y
`=>D=(-x+y+1)^2+2(y-1/2)^2+3991/2>=3991/2`
Dấu "=" xảy ra: `-x+y+1=0` và `y-1/2=0`
`<=>y=1/2` và `x=3/2`
Để tổng của M với đa thức \(x^2-2xy+y^2-2xz+z^2\) không chứa biến x thì \(M+x^2-2xy+y^2-2xz+z^2=y^2+z^2\)
=>\(M+x^2-2xy-2xz=0\)
=>\(M=-x^2+2xy+2xz\)
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
b: ΔBAE có BA=BE
nên ΔBAE cân tại B
Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)
\(\widehat{KAE}+\widehat{BEA}=90^0\)(ΔAKE vuông tại K)
mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)
nên \(\widehat{CAE}=\widehat{KAE}\)
=>AE là phân giác của góc KAC
c: Xét ΔBAK vuông tại K và ΔBCA vuông tại A có
\(\widehat{ABK}\) chung
Do đó: ΔBAK~ΔBCA
=>\(\dfrac{BA}{BC}=\dfrac{BK}{BA}\left(3\right)\)
Xét ΔBAK có BF là phân giác
nên \(\dfrac{BK}{BA}=\dfrac{KF}{FA}\left(4\right)\)
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔAKC có DE//AK
nên \(\dfrac{KE}{EC}=\dfrac{DA}{DC}=\dfrac{BA}{BC}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{KF}{FA}=\dfrac{KE}{EC}\)
=>FE//AC
Xét tứ giác AFED có
FE//AD
AF//DE
Do đó: AFED là hình bình hành
=>FD cắt AE tại trung điểm của mỗi đường
=>BD cắt AE tại trung điểm của AE(6)
Xét tứ giác AGEC có
GE//AC
AG//EC
Do đó: AGEC là hình bình hành
=>AE cắt GC tại trung điểm của AE(7)
Từ (6),(7) suy ra BD,AE,GC đồng quy
\(\left(3x\right)^2-9y^4=\left(3x\right)^2-\left(3y^2\right)^2=\left(3x-3y^2\right)\left(3x+3y^2\right)=9\left(x-y^2\right)\left(x+y^2\right)\)
\(16x^2-\left(y^2\right)^2=\left(4x\right)^2-\left(y^2\right)^2=\left(4x-y^2\right)\left(4x+y^2\right)\)
Với mọi x;y dương ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\) (1)
Đồng thời cũng suy ra: \(x+y\ge2\sqrt{xy}\) (2)
Gọi biểu thức đã cho là P, áp dụng BĐT (1) ta được:
\(P=\dfrac{\left(a+b\right)^2}{4c^2}+\dfrac{\left(b+c\right)^2}{4d^2}+\dfrac{\left(c+d\right)^2}{4a^2}+\dfrac{\left(d+a\right)^2}{4b^2}\)
\(P\ge\dfrac{4ab}{4c^2}+\dfrac{4bc}{4d^2}+\dfrac{4cd}{4a^2}+\dfrac{4da}{4b^2}=\dfrac{ab}{c^2}+\dfrac{bc}{d^2}+\dfrac{cd}{a^2}+\dfrac{da}{b^2}\)
Áp dụng tiếp BĐT (2):
\(P\ge2\sqrt{\dfrac{ab.bc}{c^2d^2}}+2\sqrt{\dfrac{cd.da}{a^2b^2}}\ge2\left(2\sqrt{\sqrt{\dfrac{ab.bc}{c^2d^2}}.\sqrt{\dfrac{cd.da}{a^2b^2}}}\right)=4\)
\(P_{min}=4\) khi \(a=b=c=d\)
ΔEHF vuông tại H
=>\(HE^2+HF^2=EF^2\)
=>\(HE=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔHEG vuông tại H và ΔHFE vuông tại H có
\(\widehat{HEG}=\widehat{HFE}\left(=90^0-\widehat{G}\right)\)
Do đó: ΔHEG~ΔHFE
=>\(\dfrac{HE}{HF}=\dfrac{HG}{HE}\)
=>\(HE^2=HF\cdot HG\)
=>\(HG=\dfrac{4^2}{3}=\dfrac{16}{3}\left(cm\right)\)
ΔEHG vuông tại H
=>\(HE^2+HG^2=EG^2\)
=>\(EG=\sqrt{\left(\dfrac{16}{3}\right)^2+4^2}=\dfrac{8\sqrt{13}}{3}\left(cm\right)\)
a: ABCD là hình thoi
=>AC\(\perp\)BD tại trung điểm của mỗi đường
=>AC\(\perp\)BD tại I
Xét tứ giác AIBM có
K là trung điểm chung của AB và IM
=>AIBM là hình bình hành
Hình bình hành AIBM có \(\widehat{AIB}=90^0\)
nên AIBM là hình chữ nhật
- Nếu n là số lẻ :
\(2024^n=4^n.506^n=\overline{...6}.\overline{...6}=\overline{...6}\)
\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)
- Nếu n là số chẵn :
\(2024^n=4^n.506^n=\overline{...1}.\overline{...6}=\overline{...6}\)
\(\Rightarrow2024^n-1=\overline{.....5}⋮10^{2023}=\overline{...0}\)
Vậy suy ra \(đpcm\)