K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

A B C H K I

a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)

xét tg HCB và tg KBC có : BC chung

^CHB = ^BKC = 90

=> tg ABC = tg KBC (ch-gn)

=> CH = BK (đn)

=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)

=> CH/AC = BK/AB 

=> HK // BC (đl)

b, sửa đề thành HC.AC = BC.IC

xét tg CHB và tg CIA có : ^ACB chung

^CHB = ^AIC = 90

=> tg CHB đồng dạng với tg AIC (g-g)

=> HC/BC = IC/AC (đn) => HC.AC = BC.IC 

c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)

=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC

mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b

=> HC.b = a.a/2  => BC = a^2/2b 

Có AH = AC - HC 

=> AH = b - a^2/2b = (2b^2 - a^2)/2b

mà HK // BC (câu a) nên 

AH/AC = HK/BC  => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b 

=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2

17 tháng 5 2020

câu b như bạn Nguyễn Phương Uyên nhé! mình bị nhầm

Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHB

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>\(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAFH vuông tại F và ΔAHC vuông tại H có

\(\widehat{FAH}\) chung

DO đó: ΔAFH~ΔAHC

=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)

=>\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF~ΔACB

8 tháng 3

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


Để đồ thị hàm số y=(3-m)x+3m+2 song song với đường thẳng y=5x-4 thì \(\left\{{}\begin{matrix}3-m=5\\3m+2\ne-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=3-5=-2\\3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

\(f\left(x\right)=\left(x^2-3x+3\right)\left(x^2-2x+3\right)-2x^2\)

\(=\left(x^2-2x+3-x\right)\left(x^2-2x+3\right)-2x^2\)

\(=\left(x^2-2x+3\right)^2-x\left(x^2-2x+3\right)-2x^2\)

\(=\left(x^2-x+3-2x\right)\left(x^2-x+3+x\right)\)

\(=\left(x^2-4x+3\right)\left(x^2+3\right)\)

Đặt f(x)=0

=>\(\left(x^2-4x+3\right)\left(x^2+3\right)=0\)

mà \(x^2+3>0\forall x\)

nên \(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

 

Bài 2:

a: Khi x=4 thì \(M=\dfrac{4+3}{4-2}=\dfrac{7}{2}\)

b: \(M=\dfrac{2}{3}\)

=>\(\dfrac{x+3}{x-2}=\dfrac{2}{3}\)

=>3(x+3)=2(x-2)

=>3x+9=2x-4

=>3x-2x=-4-9

=>x=-13(nhận)

c: Để M là số nguyên dương thì \(\left\{{}\begin{matrix}x+3⋮x-2\\M>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2+5⋮x-2\\\dfrac{x+3}{x-2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5⋮x-2\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\in\left\{1;-1;5;-5\right\}\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\)

=>\(x\in\left\{3;7\right\}\)

Bài 3:

ΔMIN vuông tại I

=>\(IM^2+IN^2=MN^2\)

=>\(x=MI=\sqrt{12^2-5^2}=\sqrt{144-25}=\sqrt{119}\left(cm\right)\)

ΔMIP vuông tại I

=>\(IM^2+IP^2=PM^2\)

=>\(y=\sqrt{119+100}=\sqrt{219}\left(cm\right)\)

Bài 4:

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔBAC~ΔBHA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔHBA~ΔHAC

=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)

=>\(HA^2=HB\cdot HC\)

c: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật

=>\(\widehat{AKI}=\widehat{AHI}\)

mà \(\widehat{AHI}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AKI}=\widehat{ABC}\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

\(\widehat{AKI}+\widehat{MAC}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)IK