K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5

câu a)

thể tích hội trường :

 \(8.5\cdot7\cdot4=238\left(m^3\right)\)

80% của hội trường :

\(238\cdot\dfrac{80}{100}=190.4\left(m^3\right)\)

Số người tại Hội trường :

\(190.4\cdot5.6=34\left(người\right)\)

 

(d')//(d)

=>\(\left\{{}\begin{matrix}a=-1\\b\ne-2\end{matrix}\right.\)

vậy: (d'): y=-x+b
Thay x=-1 và y=3 vào (d'), ta được:

b+1=3

=>b=2(nhận)

vậy: y=-x+2

5 tháng 5

4

-

52

 

5 tháng 5

 Ta có \(\left|\Omega\right|=C^5_{52}\)

 Gọi A là biến cố: "Có ít nhất 1 quân át." Khi đó xét biến cố \(\overline{A}:\) "Không có 1 quân át nào."

 Khi đó \(\left|\overline{A}\right|=C^5_{48}\) \(\Rightarrow P\left(\overline{A}\right)=\dfrac{C^5_{48}}{C^5_{52}}\) \(\Rightarrow P\left(A\right)=1-\dfrac{C^5_{48}}{C^5_{52}}\)

4
456
CTVHS
5 tháng 5

\(5274:25=210,96\)

5 tháng 5

bằng 5250 dư 24

5 tháng 5

7140-4/5=35696/5=7139,2

5 tháng 5

bằng 7139,2 nha

5 tháng 5

\(85-\dfrac{2}{5}=\dfrac{85}{1}-\dfrac{2}{5}=\dfrac{425}{5}-\dfrac{2}{5}=\dfrac{423}{5}\)

5 tháng 5

Do vòi 1 chảy riêng tỏng 3 giờ thì đầy bể nên mỗi giờ vòi 1 chảy được 1/3 (bể)

Trong 2 giờ vòi 1 chảy được:

2 × 1/3 = 2/3 (bể)

Trong 2 giờ vòi 2 chảy được:

1 - 2/3 = 1/3 (bể)

Trong 1 giờ vòi 2 chảy được:

1/3 : 2 = 1/6 (bể)

Nếu chảy riêng thì vòi 2 sẽ chảy đầy bể trong:

1 : 1/6 = 6 (giờ)

5 tháng 5

Số trứng còn lại sau khi bán lần thứ nhất chiếm:

1 - 2/3 = 1/3

Số trứng bán lần thứ hai chiếm:

1/3 × 2/3 = 2/9

Số trứng còn lại sau hai lần bán chiếm:

1/3 - 2/9 = 1/9

Số trứng người đó mang đi:

12 : 1/9 = 108 (quả)

NV
4 tháng 5

a.

B là giao điểm của BC và đường cao kẻ từ B nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}7x+5y-8=0\\9x-3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\\\end{matrix}\right.\)

\(\Rightarrow B\left(\dfrac{2}{3};\dfrac{2}{3}\right)\) (đúng)

b.

C là giao điểm BC và đường cao kẻ từ C nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}7x+5y-8=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)

\(\Rightarrow C\left(-1;3\right)\) (đúng)

c. 

Gọi H là trực tâm tam giác \(\Rightarrow H\) là giao điểm 2 đường cao kẻ từ B và C, tọa độ H là nghiệm:

\(\left\{{}\begin{matrix}9x-3y-4=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{6};\dfrac{7}{6}\right)\)

Đường cao kẻ từ A đi qua H và vuông góc BC nên nhận \(\left(5;-7\right)\) là 1 vtpt

Phương trình:

\(5\left(x-\dfrac{5}{6}\right)-7\left(y-\dfrac{7}{6}\right)=0\Leftrightarrow5x-7y+4=0\) (sai)

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>CA\(\perp\)SB tại A

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)SC tại D

Xét ΔSBC có

BD,CA là các đường cao

BD cắt CA tại H

Do đó: H là trực tâm của ΔSBC

=>SH\(\perp\)BC tại E

Xét tứ giác HECD có \(\widehat{HDC}+\widehat{HEC}=90^0+90^0=180^0\)

nên HECD là tứ giác nội tiếp

b: ΔSAH vuông tại A

mà AT là đường trung tuyến

nên TA=TH

=>ΔTHA cân tại T

=>\(\widehat{TAH}=\widehat{THA}\)

mà \(\widehat{THA}=\widehat{EHC}\)(hai góc đối đỉnh)

và \(\widehat{EHC}=\widehat{EDC}\)(HDCE nội tiếp)

nên \(\widehat{TAH}=\widehat{KDC}\)