K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5

Gọi số than đội xe phải chở mỗi ngày theo kế hoạch là x (tấn)

Thời gian chở hết than theo kế hoạch là: \(\dfrac{120}{x}\) ngày

Thực tế mỗi ngày đội chở được: \(x+6\) tấn

Thực tế số than đội chở được là: \(120+10=130\) (tấn)

Thực tế thời gian chở hết số than là: \(\dfrac{130}{x+6}\) ngày

Do đội hoàn thành trước kế hoạch 1 ngày nên ta có pt:

\(\dfrac{120}{x}-\dfrac{130}{x+6}=1\)

\(\Rightarrow120\left(x+6\right)-130x=x\left(x+6\right)\)

\(\Leftrightarrow x^2+16x-720=0\Rightarrow\left[{}\begin{matrix}x=20\\x=-36\left(loại\right)\end{matrix}\right.\)

5 tháng 5

Ý a phải là tính diện tích của hộp quà chứ bạn đề bài làm gì cho chiều cao của hình chóp tam giác đâu mà tính thể tích

5 tháng 5

\(\dfrac{11}{19}.\dfrac{12}{29}-\dfrac{11}{19}.\dfrac{2}{29}+\dfrac{11}{19}.\dfrac{19}{29}\)

\(=\dfrac{11}{19}.\left(\dfrac{12}{29}-\dfrac{2}{29}+\dfrac{19}{29}\right)\)

\(=\dfrac{11}{19}.1\)

\(=\dfrac{11}{19}\)

a: 15p=0,25 giờ

Vận tốc trung bình mà Lan đi xe đạp từ nhà đến trường là:

1,8:0,25=7,2(km/h)

b: Thời gian còn lại là 15-1,5=13,5(phút)=0,225(giờ)

vận tốc Lan cần phải đi là:

1,8:0,225=8(km/h) 

\(C=3+2\sqrt{4x^2-8x+13}\)

\(=3+2\sqrt{4x^2-8x+4+9}\)

\(=3+2\sqrt{\left(2x-2\right)^2+9}>=3+2\cdot\sqrt{9}=9\)

Dấu '=' xảy ra khi 2x-2=0

=>x=1

\(D=\left(\sqrt{x}-6\right)^2+\left(\sqrt{x}+2\right)^2\)

\(=x-12\sqrt{x}+36+x+4\sqrt{x}+4\)

\(=2x-8\sqrt{x}+40\)

\(=2\left(x-4\sqrt{x}+20\right)\)

\(=2\left(x-4\sqrt{x}+4+16\right)\)

\(=2\left(\sqrt{x}-2\right)^2+32>=32\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)

=>x=4

\(F=x+y-2\sqrt{x+2}-4\sqrt{y-1}+10\)

\(=x+2-2\sqrt{x+2}+1+y-1-4\sqrt{y-1}+4+4\)

\(=\left(\sqrt{x+2}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+4>=4\forall x,y\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+2=1\\y-1=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

\(B=6x^4+5x^2y^2+y^4+6x^2-2\)

\(=6x^4+2x^2y^2+3x^2y^2+y^4+6x^2-2\)

\(=2x^2\left(3x^2+y^2\right)+y^2\left(3x^2+y^2\right)+6x^2-2\)

\(=12x^2+18y^2+6x^2-2\)

\(=18x^2+18y^2-2=18x^2+6y^2+12y^2-2\)

\(=6\left(3x^2+y^2\right)+12y^2-2=36+12y^2-2=12y^2+34\)

1

a: Xét ΔAHN vuông tại N và ΔACH vuông tại H có

\(\widehat{HAN}\) chung

Do đó: ΔAHN~ΔACH

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAH}\) chung

Do đó: ΔAMH~ΔAHB

=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AM\cdot AB\)

=>\(AM\cdot15=12^2=144\)

=>AM=9,6(cm)

c: ΔANH~ΔAHC

=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AN\cdot AC\)

=>\(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{15^2-12^2}=9\left(cm\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HC=\sqrt{13^2-12^2}=5\left(cm\right)\)

BC=BH+CH=9+5=14(cm)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔACB

=>\(\dfrac{MN}{CB}=\dfrac{AM}{AC}\)

=>\(\dfrac{MN}{14}=\dfrac{9.6}{13}\)

=>\(MN=\dfrac{672}{65}\left(cm\right)\)

Nửa chu vi nhà Lan là 86:2=43(m)

Chiều dài là (43+7):2=25(m)

Chiều rộng là 25-7=18(m)

Diện tích là 25x18=450(m2)

Diện tích phần đất làm  vườn là:

\(450\times\left(1-\dfrac{2}{5}\right)=450\times\dfrac{3}{5}=270\left(m^2\right)\)