bài 2 tìm giá trị nhỏ nhất của biểu thức sau
C = x mũ 2 - 4x + y mũ 2 - y + 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (2x + 6)(4x2 − 12x + 36) − 8x3 + 10.
=8x3+216-8x3+10
=226
b) B = (2x − 1)(4x2 + 2x + 1) − 8(x3 + 1).
=8x3-1-8x3-8
=-9
c) C = (2 + a)(2 − a)(4 + 2a + a2 )(a2 − 2a + 4).
=[(2+a)(a2 − 2a + 4)] [((2 − a)(4 + 2a + a2 )]
=[(a+2)(a2 − 2a + 4)] [((2 − a)(4 + 2a + a2 )]
=(a3+8)(8-a3)
=8a3-a6+64-8a3
=-a6+64
=64-a6
=(8-a3)(8+a3)
d) D = (a3 b3 − 1)(a3 b3 + 1) − a3 b3 .
=a6b6-1-a3b3
a, ( 2x - 3 )2- (2x + 1)2 = -3
4x2-12x+9-4x2+4x-1=-3
-8x-1=-3
-8x=-2
x=\(\frac{1}{4}\)
b, (5x - 1) 2 - (5x + 4)(5x - 4) = 7
25x2-10x+1-25x2+16=7
-10x+17=7
-10x=-10
x=1
c, ( x- 5)2 + (x-3)(x+3) - 2(x + 1)2=0
x2-10x+25+x2-9-2x2-4x-2=0
-14x+14=0
-14(x-1)=0
=>x-1=0
x=1
a) \(\left(2x-3\right)^2-\left(2x+1\right)^2=-3\)
\(\Leftrightarrow4x^2-12x+9-4x^2-4x-1=-3\)
\(\Leftrightarrow-16x+8=-3\)
\(\Leftrightarrow-16x=-11\)
\(\Leftrightarrow x=\frac{11}{16}\)
b)\(\left(5x-1\right)^2-\left(5x+4\right)\left(5x-4\right)=7\)
\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)
\(\Leftrightarrow-10x+17=7\)
\(\Leftrightarrow-10x=-10\)
\(\Leftrightarrow x=1\)
c)\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow2x^2-10x-16-2x^2-4x-2=0\)
\(\Leftrightarrow-14x-18=0\)
\(\Leftrightarrow-14x=18\)
\(\Leftrightarrow x=-\frac{9}{7}\)
#H
Ta có (x - y)2 - (x + y)2
= (x - y + x + y)(x - y - x - y)
= 2x.(-2y)
= -4xy (đpcm)
a) B = x - x2 + 2
= \(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
=> Max B = 9/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Max B = 9/4 <=> x = 1/2
d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
=> Max P = -3/4
Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2
Vậy Max P = -3/4 <=> x = 1/2
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
Ta có:
K = x2 + y2 - 6x + y + 10
K = (x2 - 6x + 9) + (y2 + y + 1/4) + 3/4
K = (x - 3)2 + (y + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x; y (vì (x - 3)2 \(\ge\)0 và (y + 1/2)2 \(\ge\)0)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}x-3=0\\y+\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=-\frac{1}{2}\end{cases}}\)
Vậy MinK = 3/4 <=> x = 3 và y = -1/2
1.
a, 3x3-x2-21x+7=(3x3-x2)-(21x-7)
=x2(3x-1)-7(3x-1)
=(3x-1)(x2-7)
b,x3-4x2+8x-8=(x3-8)-(4x2-8x)
=(x-2)(x2+2x-4)-4x(x-2)
=(x-2)(x2+2x-4-4x)
=(x-2)(x2-2x-4)
c,x3-5x2-5x+1=(x3+1)-(5x2+5x)
=(x+1)(x2-x+1)-5x(x+1)
=(x+1)(x2-x+1-5x)
=(x+1)(x2-6x+1)
2.
a,x2y-xz+z-y=(x2y-y)-(xz-z)
=y(x2-1)-z(x-1)
=y(x-1)(x+1)-z(x-1)
=(x-1)(y+x+1-z)
b,x4-x3+x2-1=(x4-x3)+(x2-1)
=x3(x-1)+(x-1)(x+1)
=(x-1)(x3+x+1)
c,x4+x2+10x-25=x4-(x2-10x+25)
=x4-(x-5)2
=(x2-x-5)(x2+x-5)
3.
a,A=xy+7x-3y-21 với x=103,y=-17
A=xy+7x-3y-21
A=(xy-3y)+(7x-21)
A=y(x-3)+7(x-3)
A=(x-3)(y+7)
Thay x=103,y=-17 vào biểu thức
=>A=(103-3)(-17+7)
A=100.-10
A=-1000
b, B=xyz+xz-yz-z+xy+x-y-1với x=-9,y=-21,z=-31
B=xyz+xz-yz-z+xy+x-y-1
B=(xyz+xz)-(yz+z)+(xy+x)-(y+1)
B=xz(y+1)-z(y+1)+x(y+1)-(y+1)
B=(y+1)(xz-z+x-1)
Thayx=-9,y=-21,z=-31 vào biểu thức
=> B=(-21+1)[-9.(-31)-(-31)+(-9)-1]
B=-20.300
B=-6000
4.
a,x5+x4+x+1=0
(x5+x4)+(x+1)=0
x4(x+1)+(x+1)=0
(x+1)(x4+1)=0
x+1=0 hoặc x4+1=0
x=-1 hoặc x4=-1=> x=1
Vậy x=-1 hoặc x=1
Ta có C = x2 - 4x + y2 - y + 5
= \(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)
= \(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
=> Min C = 3/4
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy Min C = 3/4 <=> x = 2 ; y = 1/2
C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4
= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y
Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4