cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC vẽ điêm F sao cho E là trung điểm của DF. CMR:
a. CF=AD, CF=DB
b. AB// FC, tam giác ADE= tam giác EFC
c.DE // BC, DE=\(\frac{1}{2}\)BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL ;
\(\frac{9^2.9^3.6}{3^{11}}=\frac{\left(3^2\right)^2.\left(3^2\right)^3.3.2}{3^{11}}=\frac{3^4.3^6.3.2}{3^{11}}=\frac{3^{11}.2}{3^{11}}=2.\)
HT
a) tam giác ABC cân tại A nên hai góc ABC= ACB
Ta có: góc ABM= 180 độ - góc ABC ( kề bù )
góc ACN= 180 độ - ACB ( kề bù )
Vậy góc ABM= góc ACN
Xét tam giác ABM và tg ACN có:
AB=AC ( tg ABC cân tại A )
góc ABM= góc ACN ( cmt )
BM=CN(gt)
=> tg ABM= tg ACN ( c-g-c)
=> AM=AN( 2 cạnh tương ứng )
=> tg AMN cân tại A
b) Vì tg AMN cân tại A nên góc AMN= góc ANM
Xét tg HBM và tg KCN có:
góc MHB= góc NKC( = 90 độ )
BM=CN ( gt)
góc AMN= góc ANM ( tg AMN cân tại A)
=> tg HBM= tg KCN ( cạnh huyền - góc nhọn )
=> BH= CK ( 2 cạnh tương ứng )
c) Vì tg HBM = tg KCN nên => HM= KN ( 2 cạnh tương ứng )
Lại có: HM+HA= AM; KN+KA= AN
Vì AM= AN ( tg AMN cân tại A )
HM= HN
=> AH= AK
d) tg ABM = tg CKN => góc HBM = góc KCN
góc CBO = góc HBM và góc KCN= góc BCO ( đối đỉnh )
=> tg OBC cân tại O
e) Khi góc BAc = 60 độ => tg ABC đều
=> BM = AB
=> tg ABM cân tại B
Ta có : góc AMB = . ABC = = 30 độ
góc A= 180 độ - 30 độ - 30 độ = 120 độ
góc KCN = góc BCO = 60 độ
Hình vẽ đây :
a) Xét ΔOBK và ΔIBK có:
BO = BI (gt)
∠OBK = ∠IBK (BK là tia phân giác của ∠B)
BK: cạnh chung
⇒ ΔOBK = ΔIBK (c.g.c)
b) Ta có: ΔOBK = ΔIBK (theo a)
⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)
mà ∠BOK = 90o90o (do ΔOBM vuông tại O)
⇒ ∠BIK = 90o90o ⇒ KI ⊥ BM
c) Ta có: ΔOBK = ΔIBK (theo a)
⇒ OK = IK (2 cạnh tương ứng)
Xét ΔOAK và ΔIMK có:
∠AOK = ∠MIK = 90o90o
OK = IK (cmt)
∠OKA = ∠IKM (2 góc đối đỉnh)
⇒ ΔOAK = ΔIMK (g.c.g)
⇒ KA = KM (2 cạnh tương ứng)
a) Xét ΔOBK và ΔIBK có:
BO = BI (gt)
∠OBK = ∠IBK (BK là tia phân giác của ∠B)
BK: cạnh chung
⇒ ΔOBK = ΔIBK (c.g.c)
b) Ta có: ΔOBK = ΔIBK (theo a)
⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)
mà ∠BOK = 90o90o (do ΔOBM vuông tại O)
⇒ ∠BIK = 90o90o ⇒ KI ⊥ BM
c) Ta có: ΔOBK = ΔIBK (theo a)
⇒ OK = IK (2 cạnh tương ứng)
Xét ΔOAK và ΔIMK có:
∠AOK = ∠MIK = 90o90o
OK = IK (cmt)
∠OKA = ∠IKM (2 góc đối đỉnh)
⇒ ΔOAK = ΔIMK (g.c.g)
⇒ KA = KM (2 cạnh tương ứng)
chịu thui, tui ko biết j cả
cau a dung chua