phân tích đa thức sau thành nhân tử
a, x mũ 3 - 8
b, 27x mũ 3 + 125y mũ 3
c, ( 2x - 1 ) mũ 3 + 8
d, x mũ 6 + 216
e, 1 - 27 x mũ 3
i, ( x - 3 ) mũ 3 + 27
f, x mũ 3 y mũ 3 + 125
g, 8x mũ 3 - 1 phần 8
m, x mũ 3 + 1 phần 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(81-\left(3x+2\right)^2=9^2-\left(3x+2\right)^2=\left(9-3x-2\right)\left(9+3x+2\right)=\left(7-3x\right)\left(11+3x\right)\)
b) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)=15\left(x-1\right)\left(3x-1\right)\)
c) \(9\left(x-5y\right)^2-16\left(x+y\right)^2=\left[3\left(x-5y\right)-4\left(x+y\right)\right]\left[3\left(x-5y\right)+4\left(x+y\right)\right]\)
\(=\left(-x-19y\right)\left(7x-11y\right)\)
a, \(\left(2x-1\right)^2-\left(3x-1\right)^2=\left(2x-1-3x+1\right)\left(2x-1+3x-1\right)=-x\left(5x-2\right)\)
b, \(\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
c, \(\left(4x-1\right)^2-9x^2=\left(4x-1-3x\right)\left(4x-1+3x\right)=\left(x-1\right)\left(7x-1\right)\)
d, \(x^2-9=\left(x-3\right)\left(x+3\right)\); e, \(x^2-25=\left(x-5\right)\left(x+5\right)\)
f, \(\left(x+2\right)^2-\left(3x-1\right)^2=\left(x+2-3x+1\right)\left(x+2+3x-1\right)=\left(-2x+3\right)\left(4x+1\right)\)
i, \(x^6-y^4=\left(x^3\right)^2-\left(y^2\right)^2=\left(x^3-y^2\right)\left(x^3+y^2\right)\)
Trả lời:
\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy - x2 + 4x - 5 < 0 với mọi x
Ta có : \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left[\left(x-2\right)^2+1\right]=-\left(x-2\right)^2-1\)
Vì ( x-2)2 > 0 Với mọi x và 1 > 0
Nên \(-\left(x-2\right)^2-1< 0\forall x\)
Vậy.................
(x + 2)2 - (x + 3)(x - 3) = 5
<=> x2 + 4x + 4 - x2 + 9 = 5
<=> 4x = -8
<=> x = -2
uuuttyutyyuyuyyuyuyuyuyuyuyuy