Một khu đất hình chữ nhật có diện tích là 96 mét vuông. Nếu tǎng chiều rộng 2 mét và giảm chiều dài 1 mét thì diện tích tǎng 14 mét vuông . Tính các kích thước của khu đất.
giúp mik câu này vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
b: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
=>\(\widehat{DEH}=\widehat{DAH}\)
mà \(\widehat{HEF}=\widehat{HCF}\)
và \(\widehat{DAH}=\widehat{HCF}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{DEB}=\widehat{FEB}\)
=>EB là phân giác của góc DEF
a: Để hàm số y=(m-2)x+m+3 đồng biến thì m-2>0
=>m>2
b: Để đồ thị hàm số y=(m-2)x+m+3 song song với đường thẳng y=2x+7 thì
\(\left\{{}\begin{matrix}m-2=2\\m+3\ne7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=4\\m\ne4\end{matrix}\right.\)
=>\(m\in\varnothing\)
Hàm số y = (m + 2)x + 3 là hàm số bậc nhất khi m + 2 ≠ 0, hay m ≠ – 2.
Vậy ta có điều kiện m ≠ – 2.
a) Đồ thị hàm số đã cho song song với đường thẳng y = –x khi m + 2 = –1, tức là m = –3.
Giá trị này thỏa mãn điều kiện m ≠ – 2.
Vậy giá trị m cần tìm là m = –3.
b) Với m = –3 ta có hàm số y = –x + 3.
Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0).
\(\left\{{}\begin{matrix}8x-y=6\\x^2-y=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8x-y-x^2+y=6+6\\8x-y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-8x=-12\\y=8x-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-8x+12=0\\y=8x-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-2\right)\left(x-6\right)=0\\y=8x-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{2;6\right\}\\y=8x-6\end{matrix}\right.\)
Khi x=2 thì \(y=8\cdot2-6=16-6=10\)
Khi x=6 thì \(y=8\cdot6-6=42\)
Thông thường thì hai nghiệm phải có quan hệ với nhau, sao biểu thức trong căn chỉ chứa \(x_1\) vậy em?
Đặt số nam trong lớp là x và số nữ là y.
Theo điều kiện đầu tiên: mỗi nhóm có 4 nam và 3 nữ, thừa 1 bạn nữ. Ta có thể viết thành phương trình: 4x = 3y + 1 (1)
Theo điều kiện thứ hai: mỗi nhóm có 5 nam và 4 nữ, đúng số lượng. Ta có thể viết thành phương trình: 5x = 4y (2)
Giải hệ phương trình (1) và (2):
Từ (2) suy ra x = 4/5y Thay x vào (1) ta có: 4(4/5y) = 3y + 1 Giải phương trình trên ta có: y = 8
Thay y vào (2): 5x = 4*8 => x = 6
Vậy, số nam trong lớp là 6 và số nữ là 8.
(´▽`ʃ♡ƪ) Cho xin một like nha !!!
Gọi x (hs) là số hs nam
y (hs) là số hs nữ (x,y thuộc n*)
*Vì mỗi nhóm có 4 nam và 3 nữ thì thừa 1 bạn nữ
pt=> x/4 - y-1/3 = 0
<=> 3x - 4(y-1) = 0
<=> 3x - 4y = -4 (1)
*Vì mỗi nhóm có 5 nam và 4 nữ thì vừa đủ
pt=> x/5 - y/4 = 0
<=> 4x - 5y = 0 (2)
Từ (1) và (2)
hpt => 3x - 4y = -4 và 4x - 5y = 0
=> x = 20, y = 16
Lời giải:
Gọi chiều dài và chiều rộng của khu đất lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
$ab=96$
$(a-1)(b+2)=ab+14$
$\Leftrightarrow ab+2a-b-2=ab+14$
$\Leftrightarrow 2a-b=16$
$\Leftrightarrow b=2a-16$. Thay vào điều kiện $ab=96$ suy ra:
$a(2a-16)=96$
$\Leftrightarrow a(a-8)=48$
$\Leftrightarrow a^2-8a-48=0$
$\Leftrightarrow (a+4)(a-12)=0$
Do $a>0$ nên $a=12$
$b=96:12=8$
Vậy chiều dài và chiều rộng khu đất lần lượt là $12$ m và $8$ m
Gọi chiều rộng và chiều dài khu đất lần lượt là a(m),b(m)
(Điều kiện: a>0; b>0)
Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 1m thì diện tích tăng thêm 14m2 nên ta có:
(a+2)(b-1)=ab+14
=>ab-a+2b-2=ab+14
=>-a+2b=16
=>a-2b=-16
=>a=2b-16
Diện tích là 96m2 nên ab=96
=>\(b\left(2b-16\right)=96\)
=>\(b\left(b-8\right)=48\)
=>\(b^2-8b-48=0\)
=>(b-12)(b+4)=0
=>\(\left[{}\begin{matrix}b=12\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\)
Vậy: Chiều dài là 12m; Chiều rộng là 96:12=8(m)