K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{24\cdot47-23}{24+47\cdot23}\cdot\dfrac{3+\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{101}-\dfrac{3}{13}}{\dfrac{6}{101}-\dfrac{6}{13}+\dfrac{6}{7}-\dfrac{6}{11}+6}\)

\(=\dfrac{24\cdot\left(24+23\right)-23}{24+23\left(24+23\right)}\cdot\dfrac{3\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{101}-\dfrac{1}{13}\right)}{6\left(1+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{101}-\dfrac{1}{13}\right)}\)

\(=\dfrac{24^2+24\cdot23-23}{24+23\cdot24+23^2}\cdot\dfrac{1}{2}\)

\(=\dfrac{1105}{1105}\cdot\dfrac{1}{2}=\dfrac{1}{2}\)

b: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{19\cdot21}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{19\cdot21}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)=\dfrac{1}{2}\cdot\dfrac{20}{21}=\dfrac{10}{21}\)

3 tháng 7

1 CẶP tia tạo thành 2 góc

số cặp tia khác nhau là: 29 + 28 + 27 + ....+1 = 435

số góc là: 435 x 2 =870 góc

Bài 1:

Gọi số lập được có dạng là \(\overline{abc}\)

c có 3 cách chọn

a có 6 cách chọn

b có 5 cách chọn

Do đó: Có \(3\cdot6\cdot5=90\left(số\right)\) lập được

Số số tự nhiên có 3 chữ số phân biệt lập được là \(7\cdot6\cdot5=210\left(số\right)\)

Xác suất để số được chọn là số chẵn là \(\dfrac{90}{210}=\dfrac{3}{7}\)

Bài 2:

Số cách chọn ngẫu nhiên 4 quả cầu là: \(C^4_{10}\)

Số cách chọn 4 quả cầu trắng là: \(C^4_4\)(cách)

Số cách chọn 4 quả cầu xanh là \(C^4_6\left(cách\right)\)

Xác suất để chọn được 4 quả cầu cùng màu là:

\(\dfrac{C_4^4+C_6^4}{C_{10}^4}=\dfrac{8}{105}\)

 

3 tháng 7

Đặt: \(n^2+3n+90=k^2\)

\(=>4n^2+12n+360=4k^2\\ =>\left(4n^2+12n+9\right)+351=4k^2\\ =>\left(2n+3\right)^2-4k^2=-351\\ =>\left(2n-2k+3\right)\left(2n+2k+3\right)=-351\)

Vì n là số tự nhiên nên: \(=>2n+2k+3>2n-2k+3\)

Ta có các trường hợp sau: 

TH1: \(\left\{{}\begin{matrix}2n+2k+3=27\\2n-2k+3=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=2\\k=10\end{matrix}\right.\left(tm\right)\)

TH2: \(\left\{{}\begin{matrix}2n+2k+3=13\\2n-2k+3=-27\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-5\\k=10\end{matrix}\right.\left(ktm\right)\)

TH3: \(\left\{{}\begin{matrix}2n+2k+3=9\\2n-2k+3=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-9\\k=12\end{matrix}\right.\left(ktm\right)\)

TH4: \(\left\{{}\begin{matrix}2n+2k+3=39\\2n-2n+3=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=6\\k=12\end{matrix}\right.\left(tm\right)\) 

TH5: \(\left\{{}\begin{matrix}2n+2k+3=3\\2n-2k+3=-117\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-30\\k=30\end{matrix}\right.\left(ktm\right)\)

TH6: \(\left\{{}\begin{matrix}2n+2k+3=117\\2n-2k+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{57}{2}\\k=\dfrac{57}{2}\end{matrix}\right.\) (ktm) 

TH7: \(\left\{{}\begin{matrix}2n+2k+3=351\\2n-2k+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{175}{2}\\k=88\end{matrix}\right.\left(ktm\right)\)

TH8: \(\left\{{}\begin{matrix}2n+2k+3=1\\2n-2k+3=-351\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=-89\\k=88\end{matrix}\right.\)

Vậy n = 2 hoặc n = 6 

Bài 1:

Số lần bắn được ít nhất 8 điểm là:

5+6+5=16(lần)

=>Xác suất để bắn được ít nhất 8 điểm là \(P=\dfrac{16}{20}=\dfrac{4}{5}\)

Bài 2:

a: Xác suất xuất hiện mặt N là: \(\dfrac{18}{22}=\dfrac{9}{11}\)

b: Số lần xuất hiện mặt S là 25-11=14(lần)

Xác suất xuất hiện mặt S là \(\dfrac{14}{25}\)

c: Xác suất xuất hiện mặt N là \(\dfrac{14}{30}=\dfrac{7}{15}\)

3 tháng 7

\(a.\dfrac{2}{3}-\left(-\dfrac{1}{2}-x\right)=-\dfrac{4}{5}\\ \dfrac{2}{3}+\dfrac{1}{2}+x=-\dfrac{4}{5}\\ x=-\dfrac{4}{5}-\dfrac{2}{3}-\dfrac{1}{2}\\ x=-\dfrac{59}{30}\\ b.\left(-x-3\dfrac{1}{4}\right)-\left(1\dfrac{2}{3}-2\dfrac{3}{4}\right)=\dfrac{-5}{6}\\ \left(-x-\dfrac{13}{4}\right)-\left(\dfrac{5}{3}-\dfrac{11}{4}\right)=\dfrac{-5}{6}\\ -x-\dfrac{13}{4}-\dfrac{5}{3}+\dfrac{11}{4}=-\dfrac{5}{6}\\ -x-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{5}{3}-\dfrac{1}{2}\\ x=-\dfrac{4}{3}\\ c.\dfrac{8}{23}\cdot\dfrac{46}{24}-\dfrac{1}{2}x=\dfrac{1}{3}\\ \dfrac{2}{3}-\dfrac{1}{2}x=\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\\ x=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\\ d.\dfrac{x-1}{16}=\dfrac{3}{x+1}\\ \left(x-1\right)\left(x+1\right)=3\cdot16=48\\ x^2-1=48\\ x^2=49\\ x^2=7^2\\ x=\pm7\)

3 tháng 7

\(e.\left(1,2\right)^3x^2=\left(1,2\right)^5\\ x^2=\dfrac{\left(1,2\right)^5}{\left(1,2\right)^3}\\ x^2=\left(1,2\right)^2\\ x=\pm1,2\\ f.\left(\dfrac{2}{3}x-\dfrac{1}{4}\right)^2=4\\ \left(\dfrac{2}{3}x-\dfrac{1}{4}\right)^2=2^2\\TH1:\dfrac{2}{3}x-\dfrac{1}{4}=2\\ \dfrac{2}{3}x=2+\dfrac{1}{4}=\dfrac{9}{4}\\ x=\dfrac{9}{4}:\dfrac{2}{3}=\dfrac{27}{8}\\ TH2:\dfrac{2}{3}x-\dfrac{1}{4}=-2\\ \dfrac{2}{3}x=-2+\dfrac{1}{4}=-\dfrac{7}{4}\\ x=\dfrac{-7}{4}:\dfrac{2}{3}=-\dfrac{21}{8}\\ g.\left(\dfrac{1}{6}x-3\right)^2=\dfrac{4}{9}\\ \left(\dfrac{1}{6}x-3\right)^2=\left(\dfrac{2}{3}\right)^2\\ TH1:\dfrac{1}{6}x-3=\dfrac{2}{3}\\ \dfrac{1}{6}x=\dfrac{2}{3}+3=\dfrac{11}{3}\\ x=\dfrac{11}{3}:\dfrac{1}{6}=22\\ TH2:\dfrac{1}{6}x-3=-\dfrac{2}{3}\\ \dfrac{1}{6}x=-\dfrac{2}{3}+3=\dfrac{7}{3}\\ x=\dfrac{7}{3}:\dfrac{1}{6}=14\)

Bài 1

a: ĐKXĐ: \(n\ne4\)

Để A nguyên thì \(3n+9⋮n-4\)

=>\(3n-12+21⋮n-4\)

=>\(21⋮n-4\)

=>\(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

b: ĐKXĐ: n<>1/2

Để B nguyên thì \(6n+5⋮2n-1\)

=>\(6n-3+8⋮2n-1\)

=>\(8⋮2n-1\)

mà 2n-1 lẻ(do n nguyên)

nên \(2n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{1;0\right\}\)

Bài 2:

a: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)

=>\(-\dfrac{1}{2}\left|x-2\right|< =0\forall x\)

=>\(A=-\dfrac{1}{2}\left|x-2\right|+\dfrac{3}{2}< =\dfrac{3}{2}\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

b: \(\left|\dfrac{1}{2}-x\right|>=0\forall x\)

=>\(-2,3\left|\dfrac{1}{2}-x\right|< =0\forall x\)

=>\(D=-2,3\left|\dfrac{1}{2}-x\right|+2< =2\forall x\)

Dấu '=' xảy ra khi 1/2-x=0

=>x=1/2

3 tháng 7

Bài 1: 

\(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12}{n-4}+\dfrac{21}{n-4}=3+\dfrac{21}{n-4}\)

Để A nguyên thì \(\dfrac{21}{n-4}\) phải nguyên hay \(\left(n-4\right)\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\) (thoả mãn điều kiện)

Vậy...

\(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3}{2n-1}+\dfrac{8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để B nguyên thì \(\dfrac{8}{2n-1}\) phải nguyên hay \(\left(2n-1\right)\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Mặt khác: Vì n nguyên nên 2n-1 là số lẻ

Do đó: \(\left(2n-1\right)\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{1;0\right\}\)

Vậy....

1
3 tháng 7

1 công nhân xây ngôi nhà đó hết:

$35\times168=5880$ (ngày)

28 công nhân xây ngôi nhà đó hết:

$5880:28=210$ (ngày)

3

Số công nhân cần có để hoàn thành công việc trong 14 ngày là:

\(56\cdot\dfrac{21}{14}=56\cdot\dfrac{3}{2}=84\left(người\right)\)

Số công nhân cần tăng thêm là:

84-56=28(người)

3 tháng 7

                         Giải:

Một công nhân hoàn thành công việc đó trong số ngày là:

                  21 x 56 = 1176 (ngày)

Để hoàn thành công việc trong 14 ngày cần số người là:

                     1176 : 14 =  84 (người)

Vậy để hoàn thành công việc trong 14 ngày cần bổ sung thêm số người là:

                      84 - 56 = 28 (người)

Đáp số:.....

 

 

 

 

 

 

      

a: \(0,5^{1000}=\left(0,5^5\right)^{200}=0,03125^{200}\)

mà \(0,03125< 0,625\)

nên \(0,5^{1000}< 0,625^{200}\)

c: \(A=2+2^2+...+2^{2022}\)

=>\(2A=2^2+2^3+...+2^{2023}\)

=>\(2A-A=2^2+2^3+...+2^{2023}-2-2^2-...-2^{2022}\)

=>\(A=2^{2023}-2\)

=>A<B

e: \(2020A=\dfrac{2020^{2024}-2020}{2020^{2024}-1}=1-\dfrac{2019}{2020^{2024}-1}\)

\(2020B=\dfrac{2020^{2024}+2020}{2020^{2024}+1}=1+\dfrac{2019}{2020^{2024}+1}\)

Vì \(-\dfrac{2019}{2020^{2024}-1}< 0< \dfrac{2019}{2020^{2024}+1}\)

nên \(-\dfrac{2019}{2020^{2024}-1}+1< \dfrac{2019}{2020^{2024}+1}+1\)

=>2020A<2020B

=>A<B

d: \(\left(-\dfrac{3}{2}\right)^{2024}=\left(\dfrac{3}{2}\right)^{2024};\left(-2\right)^{2024}=2^{2024}\)

mà 3/2<2

nên \(\left(-\dfrac{3}{2}\right)^{2024}< 2^{2024}\)