Bình Dương 2015-2016
Cho phương trình (m là tham số) \(x^2-2\left(m+1\right)x+2m=0\)
1) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m.
2) Tìm các giá trị của m để phương trình có hai nghiệm cùng dương.
3) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
a= 1; b'= -(m+1); c=2m
1. Δ'>0
Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m
2. Để PT có 2 nghiệm cùng dương
\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)
Vậy với m>0 thì PT có 2 nghiệm cùng dương
3. Từ Viets:
S= 2(m+1)= 2m+2
P= 2m
Suy ra: S-P=2m+2-2m=2
hay x1+x2-x1.x2-2=0