Cho x,y là các số thực thỏa mãn 4x^2 + y^2= 8+3xy
Tìm GTLN của biểu thức P=xy +2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(1-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}+\frac{2+x}{3-x}+\frac{x+2}{x^2-5x+6}\right)\)
ĐKXĐ : x ≠ -1 ; x ≠ 2 ; x ≠ 3 ; x ≠ 11/5
\(=\left(\frac{x+1}{x+1}-\frac{x}{x+1}\right)\div\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-4}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right)\)
\(=\frac{1}{x+1}\div\frac{x-3}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{1}{x+1}\times\frac{x-2}{1}\)
\(=\frac{x-2}{x+1}\)
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)
Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)
Ta có : \(x+y\le1\)
=> \(\left(x+y\right)^2\le1\)
=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )
=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )
=> đpcm
Đẳng thức xảy ra <=> x = y = 1/2
Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)
\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)
\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)
=> đpcm
Đẳng thức xảy ra <=> a = b = c
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
Ta có: \(4x^2+y^2=8+3xy\Leftrightarrow4x^2-4xy+y^2=8-xy\)
\(\Leftrightarrow\left(2x-y\right)^2=8-xy\ge0\forall x,y\inℝ\Rightarrow xy\le8\)
\(\Rightarrow P=xy+2020\le8+2020=2028\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}2x=y\\xy=8\end{cases}}\Rightarrow\left(x,y\right)\in\left\{\left(2;4\right);\left(-2;-4\right)\right\}\)