K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

B=\(\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)=\(\frac{-3x+3\sqrt{x}+7\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

=\(\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)=\(\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)

Vậy...

17 tháng 3 2020

\(B=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x-3}}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)\(x\ge0;x\ne1\)

=>\(B=\frac{10\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

=> \(B=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

=> \(B=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

=> \(B=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)( zì \(x\ge0,x\ne1\)

17 tháng 3 2020

tu gia thiet => \(4x+4y+4z+4\sqrt{xyz}=16\)

Xet \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}\)

\(\sqrt{x\left(4x+4y+4y+4\sqrt{xyx}-4y-4z+yz\right)}\)

=\(\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}\)

=\(\sqrt{4x^2+4x\sqrt{xyx}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}\)

\(2x+\sqrt{xyz}\)

tuong tu va suy ra \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}\)

\(2\left(x+y+z\right)+3\sqrt{xyz}\)

hinh nhu de bai bn viet thieu \(-\sqrt{xyz}\)

neu dung de thi goi bieu thuc can tinh la A

ta co \(A=2\left(x+y+z\right)+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

Chuc ban hoc tot 

17 tháng 3 2020

jhfghjgjtfyt tjgfyjjtf

17 tháng 3 2020

mk lp 7: mk nghĩ do tầng ozon và ánh nắng mặt  trời( đơán mò)

17 tháng 3 2020

Ai cũng biết bầu trời có màu xanh nhưng ít ai biết được lý do tại sao. ... Tuy nhiên, màu sắc mà ta thường thấy nhất trên bầu trời là màu xanh vì chỉ  chùm sáng xanh lam  bước sóng dài nhất đi vào khí quyển, bị tán xạ mạnh bởi lớp không khí và chịu phản xạ bởi hơi nước, bụi bặm làm cho bầu trời có màu xanh lam.

học tốt >.<

17 tháng 3 2020

trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)

dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)

\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )

 dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)

* áp dụng bất đẳng thức (##) ta được 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\

* áp dụng bất đẳng thức (#) ta có

vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

   =\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)

Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)

                  \(y\left(y^2-xz+2010\right)>0\)

                  \(z\left(z^2-xy+2010\right)>0\)

Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

                                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)

                                       do dó       \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)        \(\)

                                                     =\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)

                                                     =\(\left(x+y+z\right)^3\left(2\right)\)

Từ (1) zà (2) suy ra

vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

18 tháng 3 2020

thí chủ có link koooooo

17 tháng 3 2020

Thể tích của hình lập phương cạnh a bằng a mũ 3 lần.

V = a x a x a = a3

~~ Học tốt ~~

17 tháng 3 2020

\(\text{V}=\text{a}^3\)

17 tháng 3 2020

Bài hay quá!

Đặt \(a=\frac{3x}{x+y+z};b=\frac{3y}{x+y+z};c=\frac{3z}{x+y+z}\left(x;y;z>0\right)\)

Sau khi quy đồng cần chứng minh:

\(2\, \left( x+y+z \right) \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)(gõ Latex, không biết ad đã fix lỗi chưa, nếu nó không hiện thì hỏi ad, đừng hỏi em!)

Hay là: \( \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)

Or:

\(9\, \left( 1/4\, \left( x-2\,z+y \right) ^{2}+3/4\, \left( -y+x \right) ^{2} \right) {z}^{3}+3\, \left( x-2\,z+y \right) ^{3}{z}^{2}+ \left( \left( 3/4\, \left( x-2\,z+y \right) ^{2}+1/4\, \left( -y+x \right) ^{2} \right) \left( -y+x \right) ^{2}+ \left( x-z \right) ^{ 4}+ \left( y-z \right) ^{4} \right) z+ \left( x-z \right) \left( y-z \right) \left( \left( x-z \right) ^{3}+3\, \left( x-z \right) ^{2} \left( y-z \right) +3\, \left( x-z \right) \left( y-z \right) ^{2}+ 21\, \left( x-z \right) \left( y-z \right) z+ \left( y-z \right) ^{3} \right) \geq 0 \)

Cách xử trí: Nếu nó không hiện: Sau khi quy đồng, ta biến đối nó về như trong link sau: https://imgur.com/D8ScX4k

18 tháng 3 2020

Cách khác:

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^2+b^2+c^2+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(ab+bc+ca\right)\ge12\)

Or: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\ge6\)

Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)(*)

Do đó: \(VT=\frac{ab+bc+ca}{abc}+ab+bc+ca\)

\(\ge\frac{a+b+c\left(a+b\right)-1}{\frac{c\left(a+b\right)^2}{4}}+a+b+c\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(a+b\right)-4}{c\left(a+b\right)^2}+\left(c+1\right)\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(3-c\right)-4}{c\left(3-c\right)^2}+\left(c+1\right)\left(3-c\right)-1\ge6\)

Last inequality\(\Leftrightarrow\frac{\left(2-c\right)^3\left(c-1\right)^2}{c\left(c-3\right)^2}\ge0\). Nếu c < 2 thì ta có đpcm.

Nếu \(c\ge2\)

\(VT=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\)

\(>\frac{4}{a+b}+ab+c\left(a+b\right)\ge\frac{4}{a+b}+2\left(a+b\right)\ge2\sqrt{8}>3\)