phân tích đa thức sau thành nhân tử
a, 81 - ( 3x + 2 ) mũ 2
b, ( 7x - 4 ) mũ 2 - ( 2x + 1 ) mũ 2
c, 9 ( x - 5y ) mũ 2 - 16 ( x + y ) mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x-1\right)^2-\left(3x-1\right)^2=\left(2x-1-3x+1\right)\left(2x-1+3x-1\right)=-x\left(5x-2\right)\)
b, \(\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
c, \(\left(4x-1\right)^2-9x^2=\left(4x-1-3x\right)\left(4x-1+3x\right)=\left(x-1\right)\left(7x-1\right)\)
d, \(x^2-9=\left(x-3\right)\left(x+3\right)\); e, \(x^2-25=\left(x-5\right)\left(x+5\right)\)
f, \(\left(x+2\right)^2-\left(3x-1\right)^2=\left(x+2-3x+1\right)\left(x+2+3x-1\right)=\left(-2x+3\right)\left(4x+1\right)\)
i, \(x^6-y^4=\left(x^3\right)^2-\left(y^2\right)^2=\left(x^3-y^2\right)\left(x^3+y^2\right)\)
Trả lời:
\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy - x2 + 4x - 5 < 0 với mọi x
Ta có : \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left[\left(x-2\right)^2+1\right]=-\left(x-2\right)^2-1\)
Vì ( x-2)2 > 0 Với mọi x và 1 > 0
Nên \(-\left(x-2\right)^2-1< 0\forall x\)
Vậy.................
(x + 2)2 - (x + 3)(x - 3) = 5
<=> x2 + 4x + 4 - x2 + 9 = 5
<=> 4x = -8
<=> x = -2
Trả lời:
Bài 7:
a, \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=" xảy ra khi x - 1 = 0 <=> x = 1
Vây GTNN của A = 4 khi x = 1
b, \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-6^2=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu "=" xảy ra khi \(x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của C = - 36 khi x = 0; x = - 5
d, \(D=x^2+5y^2-2xy+4y+3=x^2+y^2+4y^2-2xy+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{x=y=-\frac{1}{2}}}\)
Vậy GTNN của D = 2 khi x = y = - 1/2
Bài 10.
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)+1\)
\(=\left(n^2+3n+1\right)^2-1^2+1\)
\(=\left(n^2+3n+1\right)^2\)
Ta có đpcm.
a) \(81-\left(3x+2\right)^2=9^2-\left(3x+2\right)^2=\left(9-3x-2\right)\left(9+3x+2\right)=\left(7-3x\right)\left(11+3x\right)\)
b) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)=15\left(x-1\right)\left(3x-1\right)\)
c) \(9\left(x-5y\right)^2-16\left(x+y\right)^2=\left[3\left(x-5y\right)-4\left(x+y\right)\right]\left[3\left(x-5y\right)+4\left(x+y\right)\right]\)
\(=\left(-x-19y\right)\left(7x-11y\right)\)