giúp mình ạ
tìm x, y biết
a) 3x(x-4) + 15 = 3x2
b) x2 + y2 - 2x + 8y + 17 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-5x+5y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
b) \(2\left(x^2+1\right)^2-8x^2\)
\(=2\left[\left(x^2+1\right)^2-4x^2\right]\)
\(=2\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=2\left(x-1\right)^2\left(x+1\right)^2\)
\(4x^2-49y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-49y^2\)
\(=\left(2x+1\right)^2-\left(7y\right)^2\)
\(=\left(2x-7y+1\right)\left(2x+7y+1\right)\)
\(-x^3+9x^2-27x+27\)
\(=-\left(x^3-9x^2+27x-27\right)\)
\(=-\left(x-3\right)^3\)
\(5x^2-10xy^2+5y^4\)
\(=5\left(x^2-2xy^2+y^4\right)\)
\(=5\left(x-y^2\right)^2\)
a) ( x + 1/2 )2 - ( x + 1/2 )( x + 6 ) = 8
⇔ ( x + 1/2 )[ ( x + 1/2 ) - ( x + 6 ) ] = 8
⇔ ( x + 1/2 )( x + 1/2 - x - 6 ) = 8
⇔ ( x + 1/2 ).(-11/2) = 8
⇔ x + 1/2 = -16/11
⇔ x = -43/22
b) ( x2 + 2x )2 - 2x2 - 4x = 3
⇔ ( x2 + 2x )2 - 2( x2 + 2x ) = 3
Đặt t = x2 + 2x
bthuc ⇔ t2 - 2t - 3 = 0
⇔ ( t2 - 2t + 1 ) - 4 = 0
⇔ ( t - 1 )2 - 22 = 0
⇔ ( t - 1 - 2 )( t - 1 + 2 ) = 0
⇔ ( t - 3 )( t + 1 ) = 0
⇔ ( x2 + 2x - 3 )( x2 + 2x + 1 ) = 0
⇔ ( x2 - x + 3x - 3 )( x + 1 )2 = 0
⇔ [ x( x - 1 ) + 3( x - 1 ) ]( x + 1 )2 = 0
⇔ ( x - 1 )( x + 3 )( x + 1 )2 = 0
⇔ x - 1 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0
⇔ x = 1 hoặc x = -3 hoặc x = -1
b) \(ĐKXĐ:x\ne0\)
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)
\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{3}{5}\)
c) \(ĐKXĐ:x\ne2\)
\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn
Vậy \(x=-2\)
a) \(3x\left(x-4\right)+15=3x^2\)
\(\Leftrightarrow3x^2-12x+15-3x^2=0\)
\(\Leftrightarrow-12x+15=0\)
\(\Leftrightarrow x=\frac{5}{4}\)
b) \(x^2+y^2-2x+8y+17=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+8y+16\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)