cho x,y,z là ba số thực dương thỏa mãn x+y+z=2018
Chứng minh \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(x+z\right)^2}+\frac{z^3}{\left(x+y\right)^2}>=\frac{1009}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left(2m-3\right)x+n\)
Đồ thị hàm số qua (2;-5) và song song với đường thẳng y=-2x-2 nên ta có:
\(\hept{\begin{cases}2m-3=-2\\\left(2m-3\right)2+n=-5\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\n=-1\end{cases}}}\)
Ta được y=-2x-1
Theo bài ra ta có:
\(\hept{\begin{cases}a+b+c\inℚ\left(1\right)\\16a+4b+c\inℚ\left(2\right)\\81a+9b+c\inℚ\left(3\right)\end{cases}}\)
Từ (2) => 80a+20b+5c\(\inℚ\)kết hợp với (3) => a-11b-4c\(\inℚ\left(4\right)\)
Từ (2) có: 48a+12c+3c\(\inℚ\left(5\right)\)
Từ (4)(5) => 49a+b-c \(\inℚ\)kết hợp với (1) => 50a+2b\(\inℚ\)=> 25a+b\(\inℚ\left(6\right)\)
Từ (6)(1) => 24a-c\(\inℚ\)kết hợp với (2) => 40a+4b \(\inℚ\)=> 10a+b \(\inℚ\)kết hợp với (6) => 15a\(\inℚ\)
=> a\(\inℚ\)kết hợp với (6) => b\(\inℚ\)
Ta có đpcm
A B C D E K H N M 2 1 2 1 1 1 F O
Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:
\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )
\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )
\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)
\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)
b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M
Xét \(\Delta HC\text{D}\) có:
CK vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\Delta HC\text{D}\)cân tại C
\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Xét \(\Delta AMH\) và \(\Delta CKH\)có:
\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))
\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)
\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)
Hay \(CM\perp AB\)
Xét \(\Delta ABC\)có:
2 đường cao cắt nhau tại H
\(\Rightarrow\)H là trực tâm của tam giác ABC
c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)
Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:
\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )
\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )
\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)
\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)
Xét tam giác ABE nội tiếp đường tròn ( O, R )
có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )
\(\Rightarrow\)A , O , E thẳng hàng
phương trình (1) có 2 nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(-5\right)^2-4\times3\left(m-2\right)\ge0\)
\(\Leftrightarrow49-12m\ge0\)
\(m\le\frac{49}{12}\)
Vậy \(m\le\frac{49}{12}\)thì phương trình (1) có 2 nghiệm
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Tham khảo:Simple inequality