tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Là khi có ta tính ra một phép tính quá to, máy tính không thể load hết được sẽ có chữ e trong số.
x² - 9 = 2(x+3)²
x² - 3³ - 2(x +3 )² = 0
(x-3)(x+3) -2(x+3)² = 0
(x+3)[(x-3)(x+3) -2 ] = 0
(x+3)(x² -9 -2 ) =0
(x+3)(x² -11) = 0
TH1 : x+3=0
x =-3
TH2 : x² -11 =0
x² =11
x = √11
x² - 9 = 2(x + 3)²
(x² - 9) - 2(x + 3)² = 0
(x - 3)(x + 3) - 2(x + 3)² = 0
(x + 3)[x - 3 - 2(x + 3)] = 0
(x + 3)(x - 3 - 2x - 6) = 0
(x + 3)(-x - 9) = 0
x + 3 = 0 hoặc -x - 9 = 0
*) x + 3 = 0
x = -3
*) -x - 9 = 0
x = -9
Vậy x = -9; x = -3
Lời giải:
a. $5x^2-10xy=5x(x-2y)$
b. $3x(x-y)-6(x-y)=(x-y)(3x-6)=3(x-y)(x-2)$
c. $2x(x-y)-4y(y-x)=2x(x-y)+4y(x-y)=(x-y)(2x+4y)=2(x-y)(x+2y)$
d. $9x^2-9y^2=9(x^2-y^2)=9(x-y)(x+y)$
e. $x^2-xy-x+y=(x^2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1)$
f. $xy-xz-y+z=(xy-y)-(xz-z)=y(x-1)-z(x-1)=(x-1)(y-z)$
Lời giải:
$6x^2-x-2=0$
$\Leftrightarrow x^2-\frac{x}{6}-\frac{1}{3}=0$
$\Leftrightarrow (x^2-\frac{x}{6}+\frac{1}{12^2})-\frac{49}{144}=0$
$\Leftrightarrow (x-\frac{1}{6})^2=\frac{49}{144}$
$\Rightarrow x-\frac{1}{6}=\frac{7}{12}$ hoặc $x-\frac{1}{6}=\frac{-7}{12}$
$\Rightarrow x=\frac{3}{4}$ hoặc $x=\frac{-5}{12}$