Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
bpt \(\Leftrightarrow x+1\ge\sqrt{2\left(x^2-x+1\right)}-\sqrt{x}\)
\(\Leftrightarrow\left(x-1\right)^2\ge2\left(x^2-x+1\right)+x-2\sqrt{2x\left(x^2-x+1\right)}\)
\(\Leftrightarrow2\sqrt{2x\left(x^2-x+1\right)}\ge x^2+x+1\)
Áp dụng bđt Cosi ta có:
\(VT\le2x+x^2-x+1=x^2+x+1\)
Dấu '=' xảy ra khi \(2x=x^2-x+1\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\)
Xét phương trình: \(x^2-2x+3=x+7\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Suy ra \(d\) cắt \(\left(P\right)\) tại hai điểm \(A\left(4;11\right)\) và \(B\left(-1;6\right)\)
Giả sử \(M\left(x_0;y_0\right)\) thay đổi trên cung AB của \(\left(P\right)\). Dễ thấy \(x_0\in[-1;4]\)
Vì \(M\in\left(P\right)\) nên \(M\left(x_0;x_0^2-2x_0+3\right)\)
Ta có \(d\left(M,AB\right)=d\left(M,d\right)=\frac{\left|x_0-\left(x_0^2-2x_0+3\right)+7\right|}{\sqrt{2}}=\frac{\left|-x_0^2+3x_0+4\right|}{\sqrt{2}}=f\left(x_0\right)\)
Chú ý rằng \(x_0\in[-1;4]\), suy ra \(d\left(M,AB\right)=f\left(x_0\right)\le f\left(\frac{3}{2}\right)=\frac{25\sqrt{2}}{8}\)
Khi đó \(S_{MAB}=\frac{1}{2}d\left(M,AB\right).AB\le\frac{1}{2}.\frac{25\sqrt{2}}{8}.\sqrt{\left(-1-4\right)^2+\left(6-11\right)^2}=\frac{125}{8}\)
Đạt được khi \(M\left(\frac{3}{2};\frac{9}{4}\right).\)