Cho cac so nguyen duong a b c thoa man
(a+1)^3+(b+2)^3+(c+3)^3=3(a+1)(b+2)(c+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x + 5)3 - x2 + 25 = 0
=> (x + 5)3 - (x2 - 25) = 0
=> (x + 5)3 - (x + 5)(x - 5) = 0
=> (x + 5)[(x + 5)2 - x + 5] = 0
=> (x + 5)(x2 + 9x + 30) = 0
=> x + 5 = 0 (Vì \(x^2+9x+30=\left(x^2+9x+\frac{81}{4}\right)+\frac{39}{4}=\left(x+\frac{9}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}>0\))
=> x = -5
Vậy x = -5
Ta có A = -x2 + 4x - 6 - y2 - 2y
= -(x2 - 4x + 4) - (y2 + 2y + 1) - 1
= -(x - 2)2 - (y + 1)2 - 1 \(\le-1< 0\)
=> A < 0 với mọi x ; y
A = -x2 + 4x - 6 - y2 - 2y
= -( x2 - 4x + 4 ) - ( y2 + 2y + 1 ) - 1
= -( x - 2 )2 - ( y - 1 )2 - 1 ≤ -1 < 0 ∀ x, y
=> đpcm
a) \(4x.\left(2-x\right)+\left(2x+1\right)^2=2\)
\(8x-4x^2+4x^2+4x+1=2\)
\(12x+1=2\)
\(12x=2-1\)
\(12x=1\)
\(x=\frac{1}{12}\)
b) \(\left(x+3\right)^2-5.\left(x+3\right)=0\)
\(\left(x+3\right).\left(x+3-5\right)=0\)
\(\left(x+3\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
ax2 - ax + bx2 -bx + a + b
= (ax2+ bx2 ) - (ax + bx) + (a + b)
=x2 (a + b) - x(a + b) + (a + b)
= (x2 - x + 1)(a + b)
ax2 - ax + bx2 - bx + a + b
= ( ax2 + bx2 ) - ( ax + bx ) + ( a + b )
= x2( a + b ) - x( a + b ) + ( a + b )
= ( a + b )( x2 - x + 1 )
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
can gap nha