tìm số có hai chữ số biết rằng nếu viết xen chữ số 0 vào giữa hai chữ số của số đó thì ta được số mới bằng 7 lần số phải tìm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1h = 60p
Do đó 4h 15p = 60x4 + 15 = 255 phút
2h 35p = 60x 2 + 35 = 155 phút
Vậy 4h15p - 2h35p = 255 - 155 = 100 phút
= 1h 40p
Đ/s : 1h40 p
8 giờ tối = 20 giờ
Từ 5 giờ sáng đến 8 giờ tối có:
20 giờ - 5 giờ = 15 (giờ)
Mỗi giờ sớm 3 phút nên lúc 8 giờ tối đồng hồ chỉ:
8 giờ + 3 × 15 phút = 8 giờ 45 phút
a.
$=\frac{10-8xy^3+12xy^3+10}{4x^3y^2}=\frac{20+4xy^3}{4x^3y^2}$
$=\frac{5+xy^3}{x^3y^2}$
b.
$=\frac{4(x-2)+2(x+2)}{(x+2)(x-2)}+\frac{6-5x}{(x-2)(x+2)}$
$=\frac{6x-4}{(x+2)(x-2)}+\frac{6-5x}{(x-2)(x+2)}$
$=\frac{x+2}{(x-2)(x+2)}=\frac{1}{x-2}$
c.
$=\frac{4x+7-(3x+6)}{2x+2}=\frac{x+1}{2(x+1)}=\frac{1}{2}$
d.
$=\frac{y+6}{(y-2)(y+2)}-\frac{2}{y(y+2)}$
$=\frac{y(y+6)-2(y-2)}{y(y+2)(y-2)}=\frac{y^2+4y+4}{y(y+2)(y-2)}=\frac{(y+2)^2}{y(y+2)(y-2)}=\frac{y+2}{y(y-2)}$
e.
$=\frac{4y+7}{3y+2}.\frac{3y+2}{8y+14}=\frac{4y+7}{8y+14}=\frac{4y+7}{2(4y+7)}=\frac{1}{2}$
g.
$=\frac{3y+2}{4(2y+3)}.\frac{2y+3}{3y+2}=\frac{1}{4}$
h.
$=\frac{2y+3}{y+3}.\frac{3(y+3)}{2y+3}=3$
Lời giải:
a. $=\frac{6xy^2.3y}{6xy^2.4x^2}=\frac{3y}{4x^2}$
b.
$=\frac{(x-y)(x^2+xy+y^2)}{(x-y)(x+y)}=\frac{x^2+xy+y^2}{x+y}$
c.
$=\frac{5(4x^2-9)}{(2x+3)^2}=\frac{5(2x-3)(2x+3)}{(2x+3)^2}=\frac{5(2x-3)}{2x+3}$
d.
$=\frac{4x(x^2+2x+1)}{2x^2(x+1)}=\frac{4x(x+1)^2}{2x^2(x+1)}=\frac{2(x+1)}{x}$
Lời giải:
a. Bạn tự vẽ hình
b. PT hoành độ giao điểm của $(d), (d')$:
$x+2=-2x+8\Leftrightaarrow 3x=6\Leftrightarrow x=2$
$y=x+2=2+2=4$
Vậy $A$ có tọa độ $(2,4)$
$B\in Ox$ nên $y_B=0$
$B\in (d)$ nên $y_B=x_B+2\Rightarrow x_B=y_B-2=0-2=-2$
Vậy $B(-2,0)$
$C\in Ox$ nên $y_C=0$
$C\in (d')$ nên $y_C=-2x_C+8\Rightarrow x_C=\frac{y_C-8}{-2}=\frac{-8}{-2}=4$
Vậy $C(4,0)$
Diện tích tam giác $ABC$:
$S_{ABC}=\frac{d(A,BC).BC}{2}=\frac{d(A,Ox).BC}{2}=\frac{|y_A|(|x_B|+|x_C|)}{2}=\frac{4(2+4)}{2}=12$ (đvdt)
a.
Do chóp S.ABCD đều \(\Rightarrow SO\perp\left(ABCD\right)\)
\(\Rightarrow\) O là hình chiếu vuông góc của S lên (ABCD)
\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của \(\Delta SAB\) lên (ABCD)
b.
Gọi E là trung điểm CD \(\Rightarrow OE\) là đường trung bình tam giác BCD
\(\Rightarrow OE||BC\Rightarrow OE\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Trong mp (SOE), từ O kẻ \(OK\perp SE\)
\(OK\in\left(SOE\right)\Rightarrow CD\perp OK\)
\(\Rightarrow OK\perp\left(SCD\right)\)
Trong mp (ACK), qua A kẻ đường thẳng song song OK cắt CK kéo dài tại H
\(\Rightarrow AH\perp\left(SCD\right)\Rightarrow SH\) là hình chiếu vuông góc của SA lên (SCD)
\(\Rightarrow\widehat{ASH}\) là góc giữa SA và (SCD) hay \(\widehat{ASH}=\varphi\)
\(OE=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông SOE:
\(OK=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{5}}{5}\)
O là trung điểm AC và \(OK||SH\Rightarrow OK\) là đường trung bình tam giác CAH
\(\Rightarrow AH=2OK=\dfrac{2a\sqrt{5}}{5}\)
\(OA=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\Rightarrow SA=\sqrt{SO^2+OA^2}=\dfrac{a\sqrt{6}}{2}\)
\(\Rightarrow sin\varphi=\dfrac{AH}{SA}=\dfrac{2\sqrt{30}}{15}\)
15
Số đó là: 15
Vì khi ta thêm số 0 vào 15 thì ta được 105. Mà 105:15=7
Vậy số đó là:15