K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Vi-ét\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)

\(x_1^2+x_2^2-3x_1x_2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)

\(\Leftrightarrow m^2=14-10\)

\(\Leftrightarrow m=\pm2\)

29 tháng 3 2020

\(x^2-mx-2=0\)

\(\Delta=m^2+8\ge8\forall m\)

\(\Rightarrow\Delta>0\forall x\)=> PT luôn có 2 nghiệm phân biệt với mọi m

29 tháng 3 2020

Tớ sửa lại đề 1 chút:

\(x^2-\left(5m-1\right)x+6m^2-2m=0\)

Gọi x1;x2 là các nghiệm của PT. Tìm m để \(x_1^2+x_2^2=1\)

Giải

Theo hệ thức Vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

Do đó: \(x_1^2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}}\)

Vậy m=0 hoặc m=\(\frac{6}{13}\)thì phương trình có 2 nghiệm x1;x2 thỏa mãn \(x_1^2+x_2^2=1\)

29 tháng 3 2020

\(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)

Vậy PT luôn có nghiệm với mọi m

28 tháng 3 2020

xét tam giác AEF zà tam giác ACB có

góc A chung

góc AEF= góc AHF = góc C  

=> tam gác AEF ~ tam giác ACB(gg

 \(\frac{AE}{AC}=\frac{AF}{AB}\)

=> tam giác AEC ~ tam giác AFB(c.g.c)

=> góc ABF = góc ACE

mà \(\hept{\begin{cases}\widehat{ABF}+\widehat{EMB}=90^0\\ACE+\widehat{CNF}=90^0\end{cases}}\)

=> góc EMB = góc CNF 

lại có \(\hept{\begin{cases}\widehat{EMB}=\widehat{HMF(}đđ)\\\widehat{CNF}=\widehat{HNE}\left(dđ\right)\end{cases}}\)

=> góc HMF = góc HNE 

=> tam giác HMF ~ tam giác HNE (gg)

=> \(\frac{HM}{HN}=\frac{HF}{HE}\)

=> tam giác HMN ~ tam giác HFE (gg)

=> góc HEF = góc HNM

mà góc HEF= góc HAC = góc FHC

=> góc HNM = góc FHC

=> MN//BC