K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

1.

a. ( x + 3 )2 - 5 ( x + 3 ) = 0

<=> ( x + 3 ) ( x + 3 - 5 ) = 0

<=> ( x + 3 ) ( x - 2 ) = 0

<=> x = - 3 hoặc x = 2

b. 11x2 - 5x = 0

<=> x ( 11x - 5 ) = 0

<=> x = 0 hoặc 11x - 5 = 0

<=> x = 0 hoặc x = 5/11

2.

x2 - 2xy + y2 - 1 = ( x2 - 2xy + y2 ) - 1

= ( x - y )2 - 12

= ( x - y - 1 ) ( x - y + 1 )

31 tháng 10 2020

https://lh5.googleusercontent.com/fQgVnsOkexb808TFvm0mMcYkb3jQCiGTsl4WnPk0RgIOLTEv7iyHpBoLkWWcC9wT3JcoQ8D9yAVQkbilc5wUKNiMVErxGRZh2o2stsGGL0XVTeu2PJQPvnB5p9Mj=w740
link hình vẽ

31 tháng 10 2020

Đặt \(x^2+3x+1=t\)

\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)

\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)

\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)

\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)

31 tháng 10 2020

\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a\)ta có :

\(a\left(a+1\right)-6\)

\(=a^2+a-6\)

\(=a^2+6a-a-6\)

\(=\left(a^2+6a\right)-\left(a+6\right)\)

\(=a\left(a+6\right)-\left(a+6\right)\)

\(=\left(a+6\right)\left(a-1\right)\)

Thay \(a=x^2+3x+1\)vào A ta có :

\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)

\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)

31 tháng 10 2020

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+b^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(c-a\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Thay vào biểu thức M ta có:

\(M=\left(-c\right).\left(-a\right).\left(-b\right)=-abc\)

TH2: Nếu \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)với \(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

Thay vào biểu thức M ta có:

\(M=\left(a+b\right)\left(b+c\right)\left(c+a\right)=2a.2b.2c=8abc\)

Vậy \(M=-abc\)hoặc \(M=8abc\)

31 tháng 10 2020

My Brain:

Đau đầu-Nhức mắt-khó thở-tim đập-chân run...

O.O

31 tháng 10 2020

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)với \(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(2)

Từ (1) và (2) \(\Rightarrow\)Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( đpcm )