Không tính giá trị biểu thức, hãy giải thích tại sao:
a) A = 1.2.3.4.5 + 34 chia hết cho 2
b) B = 45 + 250 + 108 không chia hết cho 5
c) C = 40581 + 216 + 2025 chia hết cho 9
d) D = 3.4.5.6.7 + 45.1416 - 2281 không chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mua 1 quyển truyện hết số tiền là :
180 000 : 12 = 15 000 (đồng)
Nếu bạn An mua 36 quyển truyện như thế hết số tiền là :
15 000 x 36 = 540 000 (đồng)
Ta có:
\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)
\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Diện tích của nền nhà là :
18 x 5 = 90 (m2)
Để lát nền của sàn nhà đó thì hết số tiền gỗ là :
90 : 1 x 450 000 = 40 500 000 (đồng)
Đáp số: 40 500 000 đồng
Đặt P = \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
Nhận thấy : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{x+z}{x+y+z+t};\frac{t}{z+t+x}< \frac{y+t}{z+t+x+y}\)
=> P < \(\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{x+z}{x+y+z+t}+\frac{y+t}{x+y+z+t}=2\)
=> P < 2 (1)
Lại có \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t};\frac{y}{x+y+t}>\frac{y}{x+y+z+t};\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t};\frac{t}{z+t+x}>\frac{t}{x+y+z+t}\)
=> \(P>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
=> P > 1 (2)
Từ (1) và (2) => 1 < P < 2
=> P không là số tự nhiên