Cho tam giác ABC cân tại Acos BM và CN là các đường trung tuyến
a)C/m tam giác BCN=tam giác CBM
b)Gọi G là trọng tâm của tam giác ABC.Qua C kẻ đường thẳng vuông góc với BC cắt BM tại E.C/m tam giác GEC cân
c)Từ G kẻ đường thẳng song song với BC cắt CA và CE lần lượt tại O và D.C/m O là trọng tâm của tam giác GEC và 2BM>BC+MN
a: Ta có: \(AN=NB=\dfrac{AB}{2}\)
\(AM=MC=\dfrac{AC}{2}\)
mà AB=AC
nên AN=NB=AM=MC
Xét ΔNBC và ΔMCB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔNBC=ΔMCB
b: Xét ΔABC có
BM,CN là các đường trung tuyến
G là trọng tâm
Do đó: BM cắt CN tại G
=>\(GB=\dfrac{2}{3}MB;GC=\dfrac{2}{3}CN\)
mà MB=CN
nên GB=GC
=>\(\widehat{GBC}=\widehat{GCB}\)
Ta có: \(\widehat{GBC}+\widehat{GEC}=90^0\)(ΔECB vuông tại C)
\(\widehat{GCB}+\widehat{GCE}=90^0\)
mà \(\widehat{GBC}=\widehat{GCB}\)
nên \(\widehat{GEC}=\widehat{GCE}\)
=>ΔGEC cân tại G
c: ta có: BG=2/3BM
=>BG=2GM
mà BG=GE(=GC)
nên GE=2GM
=>M là trung điểm của GE
Xét ΔEBC có
G là trung điểm của EB
GD//BC
Do đó: D là trung điểm của EC
Xét ΔEGC có
GD,CM là các đường trung tuyến
GD cắt CM tại O
Do đó: O là trọng tâm của ΔEGC