Giải bài toán bằng cách lập hệ phương trình : Hai máy bơm cùng bơm nước vào một cái bể cạn (không có nước), sau 4 giờ thì đầy bể. Biết rằng nếu để máy thứ nhất bơm được một nửa bể, sau đó máy thứ hai bơm tiếp (không dùng máy thứ nhất nữa) thì sau 9 giờ bể sẽ đầy. Hỏi nếu mỗi máy bơm bơm riêng thì mất thời gian bao lâu sẽ đầy bể nước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopski ta có:
\(\left(a^3+b\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2;\left(b^3+a\right)\left(\frac{1}{b}+a\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\frac{a+b}{a^3+b}\le\frac{\frac{1}{a}+b}{a+b};\frac{a+b}{b^3+a}\le\frac{\frac{1}{b}+a}{a+b}\)
\(\Leftrightarrow M\le\frac{\frac{1}{a}+b}{a+b}+\frac{\frac{1}{b}+a}{a+b}-\frac{1}{ab}=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{a+b}-\frac{1}{ab}\)
\(=\frac{ab\left(a+b\right)+a+b-\left(a+b\right)}{ab\left(a+b\right)}=1\)
Dấu "=" xảy ra tại a=b=1
Bài này có khá nhiều cách làm
Ta có: \(a^2=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (1)
Cách 1:
Gọi I là giao điểm của MQ với đường tròn nội tiếp tam giác ABC
Xét \(\Delta MHQ\) và \(\Delta HDQ\) có: \(\hept{\begin{cases}\widehat{Q}chung\\\widehat{QMH}=\widehat{QHD}\end{cases}}\) => Tam giác MHQ đồng dạng với tam giác HDQ (gg)
=> \(\frac{QH}{QM}=\frac{QD}{QH}\) hay QH2=QM.QD=MJ=x (do tính đổi xứng tam giác ABC đều qua trụ BF) nên QH2=x.y(2)
Mặt khác vì Q thuộc HC nên QH=HC-QC=\(\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\) (3)
Từ (2)và (3) có: \(\left(\frac{x+y-z}{2}\right)^2=yz\) khai triển và rút gọn t được
\(x^2+y^2+z^2=2\left(xy+yz+xz\right)\)
Thay vào (1) => \(x^2+y^2+z^2=\frac{a^2}{2}\)
Cách 2:
Giả sử EF cắt MP tại U và cắt MQ tại V
Ta có: \(\hept{\begin{cases}\widehat{MEF}=\widehat{MFN}=\widehat{FMV}\\\widehat{EMU}=\widehat{MEI}=\widehat{MFE}\end{cases}}\)
nên tam giác MEU đồng dạng với tam giác FMV => \(\frac{MU}{EU}=\frac{FV}{MV}\) hay \(MU\cdot MV=EU\cdot FV\) hay \(UV^2=BP\cdot QC\) (4)
Mặt khác \(PQ-UV=MQ-MV=QV=\frac{a}{2}\) (5)
Sử dụng (4);(5) để biến đổi biểu thức
\(A=xy+yz+zx=BP\cdot PQ+PQ\cdot QC+QC\cdot BP=PQ\left(BP+QC\right)+UV^2\)
\(=PQ\left(EF-UV\right)+UV^2=PQ\cdot\frac{a}{2}-UV\left(PQ-UV\right)=PQ\cdot\frac{a}{2}-UV\cdot\frac{a}{2}=\frac{a}{2}\left(PQ-UV\right)\)\(=\frac{a^2}{4}\)
Thay vào (1) ta có: \(x^2+y^2+z^2=\frac{a^2}{2}\)
Cách 3:
Gọi G là trọng tâm tam giác ABC đều. Xét điểm M nằm trên tròn tâm G bán kính GM=r
H và K lần lượt là chân đường vuông góc hạ từ G và M đến BC. Kẻ GS vuông góc với MK ( S thuộc MK)
Đặt PQ=2PK=2KQ=y
Giả sử K thuộc BH (nếu K thuộc HC thì cmtt)
\(BP^2+QC^2=\left(BH-PK-KH\right)^2+\left(CH-KQ+KH\right)^2\)
\(=\left(\frac{a}{2}-\frac{y}{2}-KH\right)^2+\left(\frac{a}{2}-\frac{y}{2}+KH\right)^2=2\left(\frac{a}{2}-\frac{y}{2}\right)^2+2KH^2\) (6)
Mặt khác \(KH^2=MG^2-MS^2=r^2-\left(MK-SK\right)^2=r^2-\left(\frac{y\sqrt{3}}{2}-\frac{a\sqrt{3}}{6}\right)^2=r^2-\frac{3}{4}\left(y-\frac{a}{3}\right)^2\) (7)
Từ (6) và (7) có: \(BP^2+PQ^2+QC^2=\frac{1}{2}\left(a-y\right)^2+y^2+2r^2-\frac{3}{2}\left(y-\frac{a}{3}\right)^2=\frac{a^2}{2}+2r^2\) (8)
Khi M thuộc đường tròn nội tiếp tam giác ABC, nghĩa ra \(r=MG=\frac{a\sqrt{3}}{6}\)thì
\(BP^2+PQ^2+QC^2=\frac{1}{2}MF\)
\(\Delta'_1=a^2-b;\Delta'_2=b^2-a\)
\(\Delta'_1+\Delta'_2=a^2-b+b^2-a=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a+b-2\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(a+b-2\right)\ge0\)
Vì \(\left(a-1\right)^2\ge0;\left(b-1\right)^2\ge0;a+b-2\ge0\left(gt\right)\)
Do đó trong hai số \(\Delta'_1;\Delta'_2\) có ít nhất 1 số ko âm
Vậy ít nhất 1 trong 2 pt đã cho có nghiệm.
*hinh tu ve*
Xét phép vị tự quay S có tâm B, góc quay (BM,BA) \(\left(mol\pi\right)\)và tỉ số \(k=\frac{BM}{BA}\)
Ta có S: \(M\rightarrow A,C\rightarrow H\in BN\)
Khi đó: (HN,HC) = (AB,AM) = ((AN,AC) \(\left(mol\pi\right)\)
Nên A,N,C, H đồng viên. Theo định lý Ptolemy ta có:
HB.AC=AC(BH+NH)=AC.BH+AN.CH+AH.CN
Lại theo tính chất của phép tự vị quay thì \(k=\frac{BA}{BM}=\frac{HC}{AM}=\frac{HA}{CM}=\frac{HB}{BC}\)
\(\Rightarrow HC=\frac{AM\cdot AB}{BM};BH=\frac{AB\cdot BC}{BM};HA=\frac{AB\cdot MC}{BM}\)
\(\Rightarrow\frac{AB\cdot BC}{BM}\cdot AC=AC\cdot BN+\frac{AM\cdot AB}{BM}\cdot AN+\frac{AB\cdot MC}{BM}\cdot CN\)
hay \(\frac{AM\cdot AN}{AB\cdot AC}+\frac{BM\cdot BN}{BC\cdot BA}+\frac{CM\cdot CN}{CA\cdot CB}=1\)
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}a=b=c\)
câu này mình viết đề trên onl math không hiểu sao nó ra như vậy nữa
Câu trả lời là 22
Ta cho đồng hồ chạy từ 0h, vậy sau 60p thì kim phút ở vị trí 0h lần 2 lúc này kim giờ đang ở 1h
Vậy 24.60=1440p
Số lần 2 kim gặp nhau là 1440:65=22.15 => 2 kim gặp nhau 22 lần
bài này khó vãi