1. Cho biểu thức K = \frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{1-\sqrt{x}}
a/ Rút gọn K
b/ Tìm x nguyên dương để K nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nửa chu vi của khu vườn đó là
164:2=82(m)
Chiều dài của khu vườn là
(82+18):2=50(m)
Chiều rông của khu vườn là
50-18=32(m)
Diện tích khu vườn là
50 x 32=1600(m2)
Đ/S:1600 m2
* Lừa nhau à xD *
Nửa chu vi khu vườn là : 164 : 2 = 82m
Chiều dài khu vườn : ( 82 + 18 ) : 2 = 50m
Chiều rộng khu vườn : 82 - 50 = 32m
Diện tích khu vườn : 50 . 32 = 1600m2
Vận tốc dự định là x ( km/h )
Thời gian dự định là 7 ( h )
Quãng đường là xy ( km)
*) Mỗi giờ chậm hơn 10km => ( x - 10 ) km / h
=> t = \(\frac{xy}{\left(x-10\right)}=y-\frac{4}{5}\)
*) Mỗi giờ chậm hơn 20 km
t=\(\frac{xy}{x-20}=y-2\)
<=>\(\hept{\begin{cases}xy=\left(x-20\right)\left(y-2\right)\\5xy=\left(5y-4\right)\left(x-10\right)\end{cases}}\)
<=> \(\hept{\begin{cases}xy=xy-2x-20y+40\\5xy=5xy-50y-4x+40\end{cases}}\)
<=> \(\hept{\begin{cases}2x+20y=40\\50y+4x=40\end{cases}}\)
<=> \(\hept{\begin{cases}x=60\\y=4\end{cases}}\)
Đáp án:
Vận tốc dự định của ô tô là 60km/h, quãng đường AB là 240km
Giải thích các bước giải:
Đổi : $48'=\dfrac{4}{5}h
Gọi vận tốc dự định của ô tô đi từ A đếnB là x (km/h) (x>0)
Thời gian dự định của xe đi từ A đến B là y (h) (y>0)
Nếu xe chạy mỗi giờ chậm hơn 10km thì đến B chậm hơn 4545 h khi đó:
Vận tốc của xe là x-10 (km/h)
Thời gian đi của xe là y+4545 (h)
⇒⇒ Độ dài quãng đường là (x−10)(y+45)(x−10)(y+45) (km)
⇒⇒ Ta có pt: (x−10)(y+45)=xy(x−10)(y+45)=xy
↔45x−10y=8⇔4x−50y=40↔45x−10y=8⇔4x−50y=40 (1)
Nếu xe mỗi giờ chạy chậm 20 km thì đến chậm hơn 2h khi đó:
Vận tốc của xe là x-20 (km/h)
Thời gian đi của xe là y+2 (h)
⇒⇒ Độ dài quãng đường là (x-20)(y+2) (km)
⇒⇒ Ta có pt: (x−20)(y+2)=xy(x−20)(y+2)=xy
⇔2x−20y=40⇔x−10y=20⇔2x−20y=40⇔x−10y=20 (2)
Ta có hệ phương trình (1) và (2)
(2) ⇒x=20+10y⇒x=20+10y thay vào (1) ta được:
4(20+10y)−50y=40⇒y=4⇒x=60⇒4(20+10y)−50y=40⇒y=4⇒x=60⇒ quãng đường AB là 4.60=240km4.60=240km
Vậy vận tốc dự định của ô tô là 60km/h và quãng đường AB là 240km.
Bài 1 :
Ta có :
\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}=\sqrt{25-2.5.2\sqrt{3}+12}\)
\(+\sqrt{25+2.5.2\sqrt{3}+12}\)
\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)
\(5-2\sqrt{3}+5+2\sqrt{3}\)
\(=5+5=10\)
Bài 2 :
Với x , y , z > 0 . Ta có :
+ ) \(\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
+ ) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(2\right)\)
+ ) \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\left(3\right)\)
Xảy ra đăng thức ở : \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow x=y=z\) . Ta có :
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{\left(a+b+c\right)}{abc}\)
\(=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)
Áp dụng các bất đẳng thức (1) , (2) , (3) ta được :
\(P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)
\(=\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)