cho A = 1 + 2 + 22 + 23 +....+ 233. Hỏi A có phải là số chính phương khôgn? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ab + cd + eg ⋮ 37 thì có ab ⋮ 37, cd ⋮ 37, eg ⋮ 37
⇒ 3 số chia hết cho 37 nhân với nhau thì sẽ được kết quả chia hết cho 37. ( đpcm )
a: \(2\cdot5^2+3:71^0-54:3^3\)
\(=2\cdot25+3:1-54:27\)
=50+3-2=51
b: \(36\cdot4-4\cdot\left(82-7\cdot11\right)^2:4-2016^0\)
\(=144-\left(82-77\right)^2-1\)
\(=143-5^2=143-25=118\)
\(60=2^2.3.5\\ 63=3^2.7\\ \Rightarrow BCNN\left(60;63\right)=2^2.3^2.5.7=1260\)
80 chia hết cho a
=> a ∈ Ư(80)
70 chia hết cho a
=> a ∈ Ư(70)
=> a ∈ ƯC(80; 70)
Mà a lớn nhất
=> a ∈ ƯLCN(80; 70)
Ta có:
\(80=2^4\cdot5\\ 70=2\cdot5\cdot7\\ =>a=ƯCLN\left(80;70\right)=2\cdot5=10\)
=> a = 10
Gọi số đó là: a
a chia 5 dư 3
=> a có chữ số tận cùng là 3 và 8
Mà a là số lớn nhất nhỏ hơn 200
=> a = 198
\(A=1+2+2^2+2^3+...+2^{33}\\ \Rightarrow2A=2+2^2+2^3+2^4+...+2^{34}\\ \Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{34}\right)-\left(1+2+2^2+2^3+...+2^{33}\right)\\ \Rightarrow A=2^{34}-1\)
Ta có: \(2^{34}=2^{17.2}=\left(2^{17}\right)^2\) là số chính phương
Do đó: \(A=2^{34}-1\) không phải là số chính phương
Vậy...