K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

bn vào phần trả lời câu hỏi òi ấn vô cái chõ có hình chữ nhật bị hình tam giác che

 

3 tháng 6 2021

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

II. Cách nhận biết câu trả lời đúng

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

III. Thưởng VIP cho các thành viên tích cực

Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng  thẻ cào 50.000đ hoặc 2 tháng VIP cho 6 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.

Đề thi đánh giá năng lực

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

NM
2 tháng 6 2021

Xét 

\(y'=4x^3-4\left(m-1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=m-1\end{cases}}\)
TH1: 

\(m-1\le0\) thì hàm số đồng biến trên R

TH2: \(m-1>0\Rightarrow\orbr{\begin{cases}x=\sqrt{m-1}\\x=-\sqrt{m-1}\end{cases}}\)

Khi đó khoảng đồng biến của hàm số là \(\left(-\infty,-\sqrt{m-1}\right)\text{ và }\left(0,\sqrt{m-1}\right)\)

Muốn hàm số đồng biến trên (1,3) thì \(\left(1,3\right)\subset\left(0,\sqrt{m-1}\right)\Leftrightarrow3\le\sqrt{m-1}\Leftrightarrow m\ge10\)

Vậy \(\orbr{\begin{cases}m\le1\\m\ge10\end{cases}}\)

1 tháng 6 2021

Giúp với mọi người

4 tháng 6 2021

2 cực trị ??

12 tháng 10 2021

n!=1.2.3...nn!=1.2.3...nQuy ước: 0!=10!=1

n!=(n1)!nn!=(n−1)!n

n!p!=(p+1)(p+2)....nn!p!=(p+1)(p+2)....n  (với n>pn>p)

n!(np)!=(np+1)(np+2)....nn!(n−p)!=(n−p+1)(n−p+2)....n  (với n>pn>p)

2. Hoán vị (không lặp)

Một tập hợp gồm n phần tử (n1)(n≥1). Mỗi cách sắp xếp n phần tử này theo một thứ tự nào đó được gọi là một hoán vị của n phần tử.

Số hoán vị của n phần tử là Pn=n!Pn=n!

3. Hoán vị lặp

Cho k phần tử khác nhau a1;a2;...;aka1;a2;...;ak . Mỗi cách sắp xếp n phần tử trong đó gồm n1 phần tử a1; n2 phần tử a2;…; nk phần tử ak (n1+n2+...+nk=n)(n1+n2+...+nk=n) theo một thứ tự nào đó được gọi là một hoán vị lặp cấp n và kiểu (n1;n2;...;nk)(n1;n2;...;nk) của k phần tử

Số các hoán vị lặp cấp n kiểu (n1;n2;;;;nk)(n1;n2;;;;nk) của k phần tử là:

 

Pn(n1;n2;...;nk)=n!n1!n2!...nk!Pn(n1;n2;...;nk)=n!n1!n2!...nk!

 

HƯỚNG DẪN GIẢI

31 tháng 5 2021

??????

bạn thiếu vé báo cáo hả ?

31 tháng 5 2021

????????????

nhắn cái gì mà nhấnnnnnnnnnnnnnnnnnnn