K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2020

a) Ta có công thức hợp chất  \(XO_2\)

 \(XO_2=H_2.32=2.32=64\) 

Vậy phân tử khối của hợp chất \(XO_2\)là 64.

b) \(XO_2=64\)

Hay X + (16.2) = 64 => X = 32

Vậy nguyên tử khối của X là 32, X là nguyên tố lưu huỳnh và có kí hiệu hóa học là S.

8 tháng 11 2020

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c+1\right)^2=\left(a.1+\frac{1}{\sqrt{2}}.\sqrt{2}\left(b+c\right)+\frac{1}{\sqrt{2}}.\sqrt{2}\right)^2\)\(\le\left(a^2+1\right)\text{[}3+2\left(b+c\right)^2\text{]}\)

Khi đó cần CM BĐT : \(\frac{5}{16}\text{[}3+2\left(b+c\right)^2\text{]}\le\left(b^2+1\right)\left(c^2+1\right)\)

Hay: \(16b^2c^2+6\left(b^2+c^2\right)+1\ge20ab\)

BĐT trên đúng theo BĐT AM-GM: \(16b^2c^2+1\ge8bc,6\left(b^2+c^2\right)\ge12bc\)

Dấu '=' xảy ra khi và chỉ khi a=b=c=1/2

8 tháng 11 2020

\(A=n^3+\left(n^3+3n^2+3n+1\right)+\left(n^3+6n^2+12n+8\right)\)

\(=3n^3+9n^2+15n+9=3\left(n^3+3n^2+5n+3\right)\)

Đặt \(B=n^3+3n^2+5n+1=n^3+n^2+2n^2+2n+3n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Ta thấy \(n\left(n+1\right)\left(n+2\right)⋮3\)( vì là tích của 3 số tự nhiên liên tiếp)

\(3\left(n+1\right)⋮3\Rightarrow B⋮3\Rightarrow A=3B⋮9\)

8 tháng 11 2020

TA CÓ: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Do đó: \(\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)

\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\ge\frac{3}{4}+\frac{1}{4}.\frac{9}{ab+bc+ca}\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{3}{4}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{9}{4}=\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{1}{30}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\frac{3}{2}\)

\(=\frac{-22}{15}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\)

\(\ge\frac{-22}{15}+2\sqrt{\left[\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\right]\left[\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\right]}=\frac{-22}{15}+\frac{2}{15}=\frac{-4}{3}\)

Dấu '=' xảy ra <=> a=b=c

Vậy GTNN của P là -4/3 khi a=b=c

8 tháng 11 2020

trả lời hộ cái

8 tháng 11 2020

2xy-x2-y2+16

=16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4+x-y)(4(-x+y)