\(\hept{\begin{cases}u+v=\frac{9}{160}\\u=\frac{5}{4}.v\end{cases}}\)
Đặt ẩn phụ giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x1,x2 là hai nghiệm \(\Rightarrow x_1+x_2=-a\) và \(x_1x_2=b+1\)
Ta có : \(a^2+b^2=\left[-\left(x_1+x_2\right)\right]^2+\left(x_1x_2-1\right)^2\)
\(\Rightarrow a^2+b^2=\left(x_1^2+x_2^2+2x_1x_2\right)+\left(x_1^2x_2^2-2x_1x_2+1\right)\)
\(\Rightarrow a^2+b^2=x_1^2+x_2^2+x_1^2x_2^2+1=\left(x_1^2+1\right)\left(x_2^2+1\right)\)là hợp số
cái hệ thức cuối phải sửa thành ( pc - ar )^2 = (pb - aq )(cq- rb ) . bạn gõ sai rồi :))
giả sử x0 là nghiệm chung của hai phương trình :
\(\Rightarrow\)ax02 + bx0 + c = 0 ( 1 )
px02 + qx0 + c = 0 ( 2 )
vì a,p khác 0 nên nhân ( 1 ) với p ; nhân ( 2 ) với a , ta có :
\(\hept{\begin{cases}pax_0^2+pbx_0+pc=0\\pax_0^2+qax_0+ar=0\end{cases}}\)\(\Rightarrow\left(aq-pb\right)x_0+\left(ar-pc\right)=0\)
Tương tự : \(\left(aq-pb\right)x_0^2+\left(cq-rb\right)=0\Rightarrow\left(aq-pb\right)^2x_0^2=\left(pc-ar\right)^2\)
và \(\left(aq-pb\right)^2x_0^2=\left(rb-cq\right)\left(aq-pb\right)\)
\(\Rightarrow\left(pc-ar\right)^2=\left(rb-cq\right)\left(aq-pb\right)\Rightarrow\left(pc-ar\right)^2=\left(pb-aq\right)\left(cq-rb\right)\)