Tìm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}3kx-2y=9\\-8x+3ky=7\end{cases}\Leftrightarrow\hept{\begin{cases}24kx-16y=72\\-24kx+9k^2y=21k\end{cases}}}\)
\(\Leftrightarrow y\left(9k^2-16\right)=21k+72\)
\(\Leftrightarrow y=\frac{21k+72}{9k^2-16}\)
Để pt có 1 nghiệm duy nhất <=> 9k2-16 \(\ne\)0
<=> m\(\ne\frac{\pm4}{3}\)
Tọa độ giao điểm của hai đường thẳng (d1) : -y=-3 và (d2) : -2x-2y=-2 là nghiệm của hệ phương trình :
\(\hept{\begin{cases}-y=-3\\-2x-2y=-2\end{cases}}\)
Giải hệ phương trình ta được
\(\hept{\begin{cases}x=-2\\y=3\end{cases}}
\)
Vậy A = ( -2 , 3)
Thay A=(-2, 3) vào (d_3) ta có :
3m.(-2) + (2m-5).3 =4m+1
, <=> -6m + ( 6m -15 ) = 4m+1
<=> -6m + 6m -15 = 4m+1
<=> -6m + 6m -4m = 15 +1
<=> -4m =16
<=> m= -4
Vậy m = -4 thì 3 đường thẳng (d_1 ) , (d_2) , (d_3 ) đồng qui
hệ phương trình có 1 nghiệm duy nhất khi a/a' khác b/b'
=>(m+5)/m khác 3/2
=>2m+10 khác 3m
=>m khác 10