cho \(\Delta\)ABC vuông tại A. Trên cạnh AC lấy điểm M ,vẽ đường tròn tâm O đường kính MC. Kẻ BM cắt (O) tại D. đường thẳng DA cắt (O) tại S ,BC cắt (O) tại N . CMR :
a, ABNM nội tiếp
b, ABCD nội tiếp
c, \(\Delta ABD=\Delta ACD\)
d, \(CB.CN=CA.CM\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài
\(\overline{ab}-\overline{ba}=10.a+b-10.b-a=9.a-9.b=36\Rightarrow a-b=4\) (1)
Theo đề bài
\(3.a-b=16\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\hept{\begin{cases}a-b=4\\3a-b=16\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}}\)
Gọi A= \(\sqrt{5-\sqrt{13+2\sqrt{11}}}\) - \(\sqrt{5+\sqrt{13+2\sqrt{11}}}\)
Lấy A bình phương rồi áp dụng hằng đẳng thức số 2 sẽ ra:
A^2 = \(10-\) \(2\sqrt{25-\left(13+2\sqrt{11}\right)}\)
= \(10-2\sqrt{11-2\sqrt{11}+1}\)
= \(10-2\sqrt{\left(\sqrt{11}-1\right)^2}\)
= \(12-2\sqrt{11}\)
=\(11-2\sqrt{11}+1\)
= \(\left(\sqrt{11}-1\right)^2\)
Suy ra A= \(\sqrt{11}-1\)
\(a=\sqrt{5-\sqrt{13+2\sqrt{11}}}\); \(b=\sqrt{5+\sqrt{13+2\sqrt{11}}}\)dễ thấy \(a< b\)
ta có \(a^2+b^2=10;a.b=\left(\sqrt{11}-1\right)^{ }\).
Từ đây ta có \(\left(a-b\right)^2=\left(\sqrt{11}-1\right)^2\)kết hợp với a<b => a-b=1-\(\sqrt{11}\)