Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
\(\dfrac{x}{x-2}\)+ \(\sqrt{x-2}\) + \(\sqrt{x-2}\)\(\dfrac{x}{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này chiều nay bọn mình vừa được học xong.
Định luật Ôm : Cường độ dòng điện chạy qua dây dẫn tỉ lệ thuận với hiệu điện thế được mắc ở hai đầu dây và tỉ lệ nghịch với điện trở của dây dẫn : \(I\text{=}\dfrac{U}{R}\)
\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)
\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)
\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)
\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)
\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)
\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)
\(=15\)
\(R_B=3R_A\)
Chu vi hình tròn A : \(C_A=2\pi R_A\)
Chu vi hình tròn B : \(C_B=2\pi R_B=2\pi.3R_A=3C_A\)
Vậy hình A lăn xung quanh hình B, nó phải quay 3 vòng để trở lại điểm xuất phát
Mặc dù B gấp 3 lần bán kính A nhưng quãng đường mà đường tròn A lăn không phải là chu vi của B mà là hình tròn có tổng bán kính của A và B.
Bán kính của hình tròn A phải lăn gấp bán kính của A số lần là:
\(\left(3+1\right)=4\left(lần\right)\)
Vậy A sẽ phải mất số vòng quay là:
\(\dfrac{4\pi}{1\pi}=4\) (vòng)
a) Ta thấy \(OE=OF\Rightarrow\) O thuộc trung trực của EF.
Mặt khác, theo tính chất của 2 tiếp tuyến cắt nhau, \(ME=MF\), suy ra M cũng nằm trên trung trực của EF.
\(\Rightarrow\)OM là trung trực của EF. Mà OM cắt EF tại H nên H là trung điểm EF (đpcm)
b) Ta thấy \(\widehat{OAM}+\widehat{OFM}=90^o+90^o=180^o\) nên tứ giác OAMF nội tiếp hay 4 điểm O, M, A, F cùng thuộc 1 đường tròn.
c) Vì OM là trung trực EF nên \(OM\perp EF\) tại H \(\Rightarrow\widehat{MHK}=90^o\)
Từ đó dễ thấy tứ giác AMHK nội tiếp \(\Rightarrow OA.OK=OH.OM\)
Mà \(OH.OM=OE^2=R^2\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow OA.OK=R^2\) (đpcm)
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)
\(Đkxđ:x\ne2009;x\ne2010\)
Đặt \(t=x-2010\left(t\ne0\right)\)
\(\Rightarrow2009-x=-\left(t+1\right)\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)
\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)
\(\Leftrightarrow8t^2+8t-30=0\)
\(\Leftrightarrow4t^2+4t-15=0\)
\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)
\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)
Trước tiên ta đi chứng minh BĐT phụ là:
Với a,b>0�,�>0 thì a2+b4≥ab(a2+b2)�2+�4≥��(�2+�2)
Cách CM:
BĐT trên tương đương với: (a−b)2(a2+ab+b2)≥0(�−�)2(�2+��+�2)≥0 (luôn đúng)
Quay trở về bài toán chính: Áp dụng BĐT phụ trên :
⇒ca4+b4+c≤cab(a2+b2)+c2ab=cab(a2+b2+c2)=c2a2+b2+c2⇒��4+�4+�≤���(�2+�2)+�2��=���(�2+�2+�2)=�2�2+�2+�2
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
⇒T≤a2+b2+c2a2+b2+c2=1⇒�≤�2+�2+�2�2+�2+�2=1 (đpcm)
Dấu bằng xảy ra khi a=b=c=1
a) \(A=\sqrt[]{\left(\sqrt[]{3}-2\right)^2}-\sqrt[]{3}+\sqrt[]{12}\)
\(\Leftrightarrow A=\left|\sqrt[]{3}-2\right|-\sqrt[]{3}+2\sqrt[]{3}\)
\(\Leftrightarrow A=2-\sqrt[]{3}-\sqrt[]{3}+2\sqrt[]{3}\left(2^2=4>\left(\sqrt[]{3}\right)^2=3\right)\)
\(\Leftrightarrow A=2\)
\(B=\left(\dfrac{3\sqrt[]{x}}{\sqrt[]{x}-1}-\dfrac{1}{\sqrt[]{x}+1}-3\right).\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}+2}\left(x\ge0;x\ne1\right)\)
\(\Leftrightarrow B=\left(\dfrac{3\sqrt[]{x}\left(\sqrt[]{x}+1\right)-\left(\sqrt[]{x}-1\right)-3\left(x-1\right)}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\right).\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}+2}\)
\(\Leftrightarrow B=\left(\dfrac{3x+3\sqrt[]{x}-\sqrt[]{x}+1-3x+3}{\sqrt[]{x}-1}\right).\dfrac{1}{\sqrt[]{x}+2}\)
\(\Leftrightarrow B=\dfrac{2\sqrt[]{x}+4}{\sqrt[]{x}-1}.\dfrac{1}{\sqrt[]{x}+2}\)
\(\Leftrightarrow B=\dfrac{2\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}.\dfrac{1}{\sqrt[]{x}+2}\)
\(\Leftrightarrow B=\dfrac{2}{\sqrt[]{x}-1}\)
b) \(B< -A\)
\(\Leftrightarrow\dfrac{2}{\sqrt[]{x}-1}< -2\) \(\left(x\ge0;x\ne1\right)\)
\(\Leftrightarrow\dfrac{2}{\sqrt[]{x}-1}+2< 0\)
\(\Leftrightarrow\dfrac{2\sqrt[]{x}}{\sqrt[]{x}-1}< 0\)
\(\Leftrightarrow0< \sqrt[]{x}< 1\)
\(\Leftrightarrow0< x< 1\left(thỏa.đkxd\right)\)
Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)
\(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)
`<=>x > 2`
hmmm....đợi cô nghĩ chút<)