Cho đường tròn (O), đường kính AB = 2R. Gọi 1d và 2 d là hai tiếp tuyến của đường tròn (O) tại hai
điểm A và B. Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và
B). Đường thẳng d đi qua E và vuông góc với EI cắt hai đường thẳng 1d và 2d lần lượt tại M, N.
2. Chứng minh góc ENI =góc EBI và góc MIN =900 .
3. Chứng minh AM.BN =AI.BI.
4. Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam
giác MIN theo R khi ba điểm E, I, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O;R) có:
\(\widehat{BCD}\)là góc nt chắn cung BC
\(\widehat{BAC}\)là góc nt chắn cung BC
\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)
Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)
Xét \(\Delta ACM\)và \(\Delta DBM\):
\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)
\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)
\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)
b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)
Xét \(\left(O;R\right):\)
\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)
\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)
Có\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)
Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)
Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)
Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)
Xét tg ABCE có:
\(AB//CE\)
\(\widehat{MAC}=\widehat{ABE}\)
\(\Rightarrow Tg\)ABCE là hthang cân
c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:
\(AM^2=AC^2-CM^2\)(1)
\(MB^2=BC^2-CM^2\)(2)
\(MC^2=BC^2-BM^2\)(3)
\(MD^2=BD^2-BM^2\)(4)
\(DE^2=BD^2+BE^2\)(5)
Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:
\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))
\(=AC^2+BD^2\)
\(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)
\(=DE^2\)(c/m (5))
Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)
Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)
:D
\(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^2+8ca\right)}+\frac{1}{c\left(c^2+ab\right)}\le\frac{1}{3abc}\)
\(\Leftrightarrow\frac{1}{\frac{a^2}{bc}+8}+\frac{1}{\frac{b^2}{ca}+8}+\frac{1}{\frac{c^2}{ab}+8}\le3\) (*)
Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\left(x,y,z>0\right)\)
(*)\(\Leftrightarrow\frac{1}{x+8}+\frac{1}{y+8}+\frac{1}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow16\left(x+y+z\right)+5\left(xy+yz+zx\right)\ge63\)(**)
(**) đúng bởi \(x+y+z\ge3\sqrt[3]{xyz}=3;xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)
Tìm hai số tự nhiên, biết rằng tổng của chúng là 1636. Nếu lấy số lớn chia cho số nhỏ thì được thương là 3 và số dư là 196.
Giải:
Vì số lớn chia cho số bé được 3 nên số lớn gấp 3 lần số bé
Số bé là :
( 1636 - 196 ) : ( 3 +1 ) = 360
Số lớn là :
1636 - 360 = 1276
Đáp số : Số bé là 360
Số lớn là 1276
\(\Delta=\left(2m-1\right)^2-4\cdot2\left(m-1\right)=4m^2-4m+1-8m+8\)
\(\Delta=4m^2-12m+9=\left(2m-3\right)^2\)
Phương trình có 2 nghiệm phân biệt <=> \(\Delta>0\)
<=> \(\left(2m-3\right)^2>0\)
<=> 2m-3 \(\ne\)0
<=> m \(\ne\)\(\frac{3}{2}\)
ta có phương trình có 2 nghiệm dương phân biệt
\(\hept{\begin{cases}\Delta>0\\p>0\\s>0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne\frac{3}{2}\\\frac{m-1}{2}>0\\\frac{1-2m}{2}>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m-1>0\\1-2m>0\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}m>1\\2m< 1\end{cases}\Leftrightarrow m=\varnothing}\)
vậy không có giá trị thỏa mãn
áp dụng công thức trong toán nha x1^2+x2^2= (x1+x2)^2 -2x1x2