K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

Gọi thời gian người 1 làm 1 mk xong cv là x ( h, x>6)

      thời gian người 2 làm 1 mk xong cv là y (h, y>6)

Trong 1h, người 1 làm đc \(\frac{1}{x}\left(cv\right)\)

                người 2 làm đc \(\frac{1}{y}\left(cv\right)\)

                cả 2 người cùng làm đc \(\frac{1}{6}\left(cv\right)\)

Do đó ta có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\left(1\right)\)

Nếu làm riêng rẽ, mỗi người nửa cv thì người 1 làm xong cv trong \(\frac{1}{2}:\frac{1}{x}=\frac{x}{2}\left(h\right)\), người 2 làm xong cv trong \(\frac{1}{2}:\frac{1}{y}=\frac{y}{2}\left(h\right)\)

Khi đó tổng số giờ làm việc là 12h30' \(\left(=\frac{25}{2}h\right)\)nên ta có pt \(\frac{x}{2}+\frac{y}{2}=\frac{25}{2}\Leftrightarrow x+y=25\left(2\right)\)

Từ (1)(2) ta có hpt \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\x+y=25\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\\frac{1}{25-y}+\frac{1}{y}=\frac{1}{6}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=25-y\\6y-6y+150=25y-y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\150-25y+y^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=25-y\\\left(10-y\right)\left(15-y\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=10;x=15\\y=15;x=10\end{cases}}\left(TMĐK\right)\)

Vậy thời gian 2 người làm 1 mk xog cv lần lượt là 10h và 15h hoặc 15h và 10h

19 tháng 4 2020

Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)

\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)

\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)

\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)

19 tháng 4 2020

đồng biến nha bạn

Học tốt

19 tháng 4 2020

nhầm nghịch biến nha

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

19 tháng 4 2020

Bánh xe có chu vi 3,454m 3,454m thì bán kính của nó là  m .

19 tháng 4 2020

\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(\Rightarrow\sqrt{2}A=\sqrt{2\left(3-\sqrt{5}\right)}+\sqrt{2\left(3+\sqrt{5}\right)}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(\Leftrightarrow\sqrt{2}A=\left|\sqrt{5}-1\right|+\left|\sqrt{5}+1\right|\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{5}-1+\sqrt{5}+1\) ( do \(\sqrt{5}-1>0\) ) 

\(\Leftrightarrow\sqrt{2}A=2\sqrt{5}\)

\(\Leftrightarrow A=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

19 tháng 4 2020

A B C E H

a) Ta có: BK \(\perp\)AC ; AD \(\perp\)BC 

=> ^ADB = ^BKA = 90 độ 

=> Tứ giác AKDB nội tiếp 

=> ^KAH = ^DBH 

Mà ^KAH = ^CAE = ^CBE = ^DBE 

=> ^DBH = ^DBE 

=> BD là tia phân giác ^HBE  hay BC là tia phân giác ^HBE

b) Xét \(\Delta\)HBE có: BD là đường cao đồng thời là đường phân giác 

=> \(\Delta\)HBE cân 

=> BD là đường trung tuyến => D là trung điểm HE  và HE vuông BC tại D 

=> E và H đối xứng với nhau qua BC

19 tháng 4 2020

A B C D H K E

a ) Ta có : \(BK\perp AC,AD\perp BC\Rightarrow\widehat{AKB}=\widehat{ADB}=90^0\)

\(\Rightarrow AKDB\) nội tiếp 

\(\Rightarrow\widehat{EBC}=\widehat{EAC}=\widehat{DAK}=\widehat{KBD}=\widehat{HBD}\)

\(\Rightarrow BC\) là tia phân giác \(\widehat{HBE}\)

b ) Vì BC là tia phân giác \(\widehat{HBE},BD\perp AE\)

\(\Rightarrow\Delta BHE\) cân tại B 

=> DH = DE 

Lại có \(HE\perp BC\Rightarrow E,H\) đối xứng qua BC 

19 tháng 4 2020

bđt tương đường với:

\(\left(a+b+c\right)\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge2\left(ab+bc+ca\right)\)

Mật khác theo BĐT Cauchy-Schwart ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

Vậy để cm bài toán ta cần chứng minh được

\(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

Đây chính là BĐT Schur dang phân thức. Bài toán được chứng minh

Đẳng thức xảy ra khi a=b=c và a=b=c=0 và hoán vị

19 tháng 4 2020

Em xin lỗi cô và các bạn! Em giải lại ạ

Giải

Biến đổi tương đương BĐT như sau:

\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\frac{c\left(a^2+b^2\right)}{a+b}+\frac{a\left(b^2+c^2\right)}{b+c}+\frac{b\left(c^2+a^2\right)}{a+c}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{c\left[\left(a+b\right)^2-2ab\right]}{a+b}+\frac{a\left[\left(b+c\right)^2-2bc\right]}{b+c}+\frac{b\left[\left(c+a\right)^2-2ca\right]}{c+a}\le a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le a^2+b^2+c^2+abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

Theo BĐT dang \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\), ta được

\(a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

Ta cần chỉ ra được \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\), BĐT này tương đương với

\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

BĐT trên là hệ quả của BĐT Schur

Dấu "=" xảy ra <=> a=b=c

Ta có : MP = MQ (tính chất tiếp tuyến)

=> \(\Delta\) MPQ là tam giác cân

=> ^MPQ = ^MQP

mà ^MQP = ^MIP (2 góc nội tiếp cùng chắng cung MP)

=> ^MPQ = ^MIP => ^MPE = ^MIP

Xét \(\Delta\) MPE và \(\Delta\) MIP ta có :

 M: góc chung

^MPE = ^MIP (cmt)

=> \(\Delta\)MPE đồng dạng \(\Delta\) MIP (g.g)

=> \(\frac{MP}{MI}=\frac{ME}{MB}\)

=> đpcm

Giải thích các bước giải:

a.Ta có AK⊥CK,AH⊥CHAK⊥CK,AH⊥CH

→ˆAKC+ˆAHC=90o+90o=180o→AKC^+AHC^=90o+90o=180o

→A,H,C,K→A,H,C,K thuộc đường tròn đường kính AC

b. Vì ADAD là đường kính của (O)
→AB⊥BD→AB⊥BD

Mà BH⊥AD→AB2=AH.ADBH⊥AD→AB2=AH.AD

c. Vì BC⊥AD→B,CBC⊥AD→B,C đối xứng qua AD
→ˆABC=ˆACB→ABC^=ACB^

Mà AMCBAMCB nội tiếp (O)→ˆKMC=ˆABC(O)→KMC^=ABC^

→ˆNMK=ˆAMB=ˆACB=ˆABC=ˆKMC→NMK^=AMB^=ACB^=ABC^=KMC^

Xét 2 tam giác vuông ΔMKNΔMKN và ΔMKCΔMKC có:

KMKM chung

ˆNMK=ˆKMCNMK^=KMC^ (cmt)

⇒ΔMKN=ΔMKC⇒ΔMKN=ΔMKC (cạnh góc vuông-góc nhọn)

⇒KN=KC⇒AK⇒KN=KC⇒AK vừa là đường cao vừa là trung tuyến ΔANCΔANC

⇒ΔANC⇒ΔANC cân đỉnh AA.

d. Vì ΔACNΔACN cân tại A →AN=AC→AN=AC

Mà B,C đối xứng qua AD
→AC=AB→AN=AB→ΔABN→AC=AB→AN=AB→ΔABN cân đỉnh AA

Lấy E là trung điểm BN→AE⊥BN→AE⊥BN

→E→E là trung điểm BN

→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22→SABN=12AE.BN=12AE.2BE=AE.BE≤AE2+BE22=AB22

Dấu = xảy ra khi AE=BE→ˆABE=45o→ˆABM=45oAE=BE→ABE^=45o→ABM^=45o

image