Bài: Cho nửa đường tròn tâm O, đường kính AB. Dây AC cắt dây BD tại I.
a) Chứng minh IA.IC = IB.ID
b) Đường thẳng AD cắt đường thẳng BC tại E. Chứng minh IDEC là tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá tiền 1 cái bánh là 4000 đồng.
Giá tiền 1 hộp sữa là 5000 đồng.
Hok tốt
^_^
Bạn tham khảo câu trả lời tại đây:
Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath
\(ĐKXĐ:x\ge0\)
Mình đoán đề là \(\sqrt{x}+\sqrt{1-x}-\sqrt{x\left(1-x\right)}=1\)
Nếu đề như thế thì pt ban đầu tương đương với
\(\sqrt{x}\left(1-\sqrt{1-x}\right)-\left(1-\sqrt{1-x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(1-\sqrt{1-x}\right)=0\)
\(\Leftrightarrow x=1\left(h\right)x=-1\)
Loại TH x=-1
a.Vì AB là tiếp tuyến của (O)
\(\Rightarrow MB\) là tiếp tuyến của (O)
\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)
\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)
b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)
Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)
\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)
c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)
\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)
\(\Rightarrow\Delta BCD\) cân tại B
Bài 1 :
Ta có :
\(a^3+b^3+1\ge3\sqrt[3]{a^3.b^3.1}=3ab\)
\(b^3+c^3+1\ge3\sqrt[3]{b^3.c^3.1}=3bc\)
\(c^3+a^3+1\ge3\sqrt[3]{c^3a^3.1}=3ca\)
Cộng vế với vế
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3.3\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
Dấu = xảy ra khi a=b=c=1
Gọi khoảng cách AB là x (x>0)
Vì vận tốc xuôi dòng của cano là 40km/h, vận tốc dòng nước là 3km/h
\(\Rightarrow\)Vận tốc riêng của cano là 40−3=37(km/h)
\(\Rightarrow\)Vận tốc ngược dòng của cano là 37−3=34(km/h)
Vì thời gian xuôi dòng ít hơn thời gian ngược dòng 40′ ( hay \(\frac{2}{3}h\) )
\(\Rightarrow\frac{x}{40}+\frac{2}{3}=\frac{x}{34}\)
\(\Rightarrow51x+1360=60x\)
\(\Rightarrow9x=1360\)
\(\Rightarrow x=\frac{1360}{9}\)