K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

tôi ko biết

lớp 9 chưa hok

Thử :

Áp dụng BĐT Cosi ta đc : 

\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge\frac{9}{a+b+c}\)

\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge3\sqrt{\frac{a}{c}.\frac{b}{a}.\frac{c}{b}}=3\)

Dấu ''='' xảy ra khi \(\frac{9}{a+b+c}\Leftrightarrow\frac{9}{3+3+3}=1\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases};c=1}\)

Lần đầu lm cs vẻ sai phần trình bày 

27 tháng 4 2020

No Name  làm thế này mới đúng

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{c}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)

Ta sẽ chứng minh

\(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{3}{ab+bc+ca}+2\ge\frac{9}{a+b+c}\)

Đặt a+b+c=t thì ta cần chứng minh

\(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)

Dấu "=" xảy ra <=> a=b=c=1

\(4\left(2\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)^2=0\)

\(8\sqrt{x}-4-x-2\sqrt{x}-1=0\)

\(6\sqrt{x}-5-x=0\)

\(-5-x=6\sqrt{x}\)

\(5+x=6\sqrt{x}\)

\(25+10x+x^2=36x\)

\(25+10x+x^2-36x=0\)

\(25+x^2-26x=0\)

\(\left(x-1\right)\left(x-25\right)=0\)

\(x-1=0\Leftrightarrow x=1\)

hoặc 

\(x-25=0\Leftrightarrow x=25\)

27 tháng 4 2020

\(\hept{\begin{cases}x+mx=1\\mx+y=m^2\end{cases}\left(1\right)}\)

Với m=0 (1) <=> \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

Với m\(\ne\)0 (1) <=> \(\hept{\begin{cases}x=1-my\\y=m^2-m\left(1-my\right)\end{cases}}\)

=> \(y=m^2-m+m^2y=m^2y+m^2-m\)

<=> \(\left(1-m^2\right)y=m^2-m\)

Th1: 1-m2=0 <=> \(m=\pm1\)

thì 0y=0 với m=1

=> PT vô số nghiệm với mọi y

=> x=1-y => Vô số nghiệm x

thì 0y=2 => Pt vô nghiệm

Th2: 1-m2\(\ne\)0 <=> m\(\ne\pm1\)

thì \(y=\frac{m^2-m}{1-m^2};x=1-\frac{m\left(m^2-m\right)}{1-m^2}=\frac{1-m^2-m^3+m^2}{1-m^2}=\frac{1-m^3}{1-m^2}\)