Câu 1 ) cho phương tình x ²-2x+2m-1 =0 (m là tham số) Tìm m để pt trên có 2 nghiệm x1,x2 thỏa mãn hệ thức 3x1+2x2=1
Câu 2 ) 2x-1/x+4 - 3x-1/4 -x =5 + 96/x ² - 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{T}{M}\), ta có T>0 => \(T=\sqrt{T^2}\). Xét
\(T^2=\left(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}\right)-2\sqrt{\left(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}\right)}+\left(\sqrt[4]{8}-\sqrt{\sqrt{2}-1}\right)\)
\(=2\sqrt[4]{8}-2\sqrt{\sqrt{8}-\left(\sqrt{2}-1\right)}\)
\(=2\sqrt[4]{8}-2\sqrt{\sqrt{2}+1}\)
\(=2\left(\sqrt[4]{8}-\sqrt{\sqrt{2}+1}\right)\)
\(\Rightarrow T=\sqrt{2}\cdot\sqrt{\sqrt[4]{8}-2\sqrt{2}+1}\)
\(\Rightarrow A=\sqrt{2}\)
a) Vì AD là p/g \(\widehat{A}\Rightarrow\widehat{BAD}=\widehat{CAD}\left(1\right)\)
Xét (O) có \(\widehat{CAD}\)là góc nt chắn cung CD
\(\widehat{MCD}\)là góc tạo bởi tiếp tuyến CM và dây CD
\(\Rightarrow\widehat{CAD}=\widehat{MCD}\left(2\right)\)
Từ (1)(2) \(\Rightarrow\widehat{BAD}=\widehat{MCD}\)
Mà A và C là 2 đỉnh liên tiếp của tg ACMN
\(\Rightarrow\)ACMN là tg nt
b) Xét \(\Delta ADN\)có \(\widehat{ADN}+\widehat{DNA}+\widehat{DAN}=180^o\)
Lại có \(\widehat{CDA}\)là góc ngoài của \(\Delta ADN\)kề \(\widehat{ADN}\)
\(\Rightarrow\widehat{CDA}=\widehat{DAN}+\widehat{DNA}\)
Do đó \(\widehat{CDA}+\widehat{ADN}=180^o=\widehat{CDN}\)
\(\Rightarrow\)3 điểm N,D,C thẳng hàng
Bài 1 :
Để phương trình có 2 nghiệm x1 , x2
\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)
\(\Rightarrow m\le1\)
\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)
Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)
Vì \(x_1=-3\) là 1 nghiệm của phương trình
\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)
Bài 2 :
\(ĐKXĐ:x\ne\pm4\)
Ta có :
\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)
\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)
\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)
\(\Rightarrow5x^2+2x=5x^2+16\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)