Cho ba điểm $A, B, C$ phân biệt, cố định và thẳng hàng sao cho $B$ nằm giữa $A$ và $C$. Vẽ nửa đường tròn tâm $O$ đường kính $B C$. Từ $A$ kẻ tiếp tuyến $A M$ đến nửa đường tròn $(O)$ ( $M$ là tiếp điểm). Trên cung $M C$ lấy điểm $E$ ( $E$ không trùng với $M$ và $C$ ), đường thẳng $A E$ cắt nửa đường tròn $(O)$ tại điểm thứ hai là $F(F$ không trùng $E$ ). Gọi $I$ là trung điểm của đoạn thẳng $E F$ và $H$ là hình chiếu vuông góc của $M$ lên đường thẳng $B C$. Chứng minh rằng:
a) Tứ giác $A M I O$ nội tiếp;
b) Hai tam giác $O F H$ và $O A F$ đồng dạng với nhau;
c) Trọng tâm $G$ của tam giác $O E F$ luôn nằm trên một đường tròn cố định khi điểm $E$ thay đổi trên $M C$.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.