Bai 1:Cho a,b,c>0 CMR
\(|\Sigma \frac{a^3-b^3}{a+b}| \leq \frac{\Sigma(a-b)^2}{4}\)
Bai 2 :Cho \(a,b,c \in R\) CMR
\(\Sigma \sqrt{a^2+(1-b)^2} \geq \frac{3}{\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A B M O H
hình hơi chênh lệch, bạn thông cảm vì mình vẽ phần mềm hình olm gà lắm
Xét \(\Delta AMC\)và \(\Delta BCM\)có :
\(\widehat{M}\)( chung ) ; \(\widehat{ACM}=\widehat{CBM}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)
\(\Rightarrow\Delta AMC~\Delta CMB\left(g.g\right)\)
\(\Rightarrow\frac{AM}{MC}=\frac{MC}{MB}\Rightarrow MC^2=MA.MB\)
\(\Rightarrow MB=\frac{MC^2}{MA}=4a\)
Ta có : \(AB=MB-AM=4a-a=3a\)
Xét \(\Delta OCM\)có \(OC\perp CM\) :
\(\Rightarrow S_{OCM}=\frac{1}{2}OC.MC=\frac{1}{2}CH.OM\)
\(\Rightarrow CH=\frac{OC.MC}{OM}=\frac{\frac{AB}{2}.MC}{\frac{AB}{2}+AM}=\frac{6}{5}a\)
Chu vi của bánh xe là:
70 x 3,14 = 219,8 (cm)
Khoảng cách từ nhà AN đến trường là:
984 x 219,8 = 216283,2 cm
Đáp số:...
A C B O M N P D
Vì NP là tiếp tuyến của (O)
\(\Rightarrow PM\perp ON\Rightarrow\widehat{ONP}=90^0\)
Mà \(\widehat{OMP}=90^0\Rightarrow\widehat{OMP}=\widehat{ONP}\)
\(\Rightarrow\) ◊OMNP nội tiếp(1)
\(\Rightarrow O,M,N,P\) cùng thuộc một đường tròn
Do CD là đường kính của (O) \(\Rightarrow DN\perp CN\Rightarrow\widehat{COM}=\widehat{CND}=90^0\)
\(\Rightarrow\text{◊ }\)OMND nội tiếp
\(\Rightarrow O,M,N,D\)cùng thuộc một đường tròn (2)
\(\Rightarrow\widehat{MPD}=180^0-\widehat{DOM}=180^0-90^0=90^0\)
\(\Rightarrow MP\perp DP\Rightarrow OD//MP\)
\(\Rightarrow OMPD\) là hình bình hành
\(\Rightarrow OD=MP\Rightarrow MP=R\)
Phân tích đa thức thành nhân tử bằng phương pháp nhẩm nghiệm. Ta thấy x=−3 là nghiệm của phương trình, vậy phải phân tích sao cho đa thức trên xuất hiện nhân tử chung x+3
Ta có :
\(x^3-6x+9=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+3x+9=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+3\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+3\right)=0\)
Vì \(x^2-3x+3=0\) ( vô nghiệm )
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{-3\right\}\)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+2\right)\left[1+\frac{\left(b+c\right)^2}{2}\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{a^2+2}\le\frac{1+\frac{\left(b+c\right)^2}{2}}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{b^2+2}\le\frac{1+\frac{\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\) ; \(\frac{1}{c^2+2}\le\frac{1+\frac{\left(a+b\right)^2}{2}}{\left(a+b+c\right)^2}\)
Cộng vế theo vế,ta có :
\(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le\frac{3+\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2}{2}}{\left(a+b+c\right)^2}\)
\(=\frac{3+a^2+b^2+c^2+ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi a = b = c = 1
Đặt \(P=\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\)
Thực hiện phép biến đổi theo biểu thức P ta được
\(Q=3-2P=\frac{a^2}{a^2+2}+\frac{b^2}{a^2+2}+\frac{c^2}{c^2+2}\)
Theo BĐT Cauchy-Schwarz ta có:
\(Q\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=1\)
\(\Rightarrow P\le1\). Dấu "=" xảy ra <=> a=b=c=1
Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)
Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)
BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)
<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)
Áp dụng BĐT Schur ta có:
\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)
Khi đó BĐT
<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)
<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)
<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c
Bài 2
Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)
Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)
=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)