\(\frac{x_2}{x_1+3}\)+\(\frac{x_1}{x_2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tuổi của an là xy .
Nếu đổi chữ số hàng đơn vị và hàng chục thì ta được số mới lớn hơn số cũ 36 đơn vị nên ta có pt :
10y+x-10x-y=36 => 9y-9x=4 => x-y=-4 (1)
Tổng ba lần chữ số hàng chục và hàng đơn vị bằng 8 nên ta có pt:
3x+y=8 (2)
Từ (1) và (2) , ta có hpt:
\(\hept{\begin{cases}x-y=-4\\3x+y=8\end{cases}}\)=>\(\hept{\begin{cases}4x=4\\x-y=-4\end{cases}}\)=>\(\hept{\begin{cases}x=1\\y=5\end{cases}}\)
Vậy năm nay an 15 tuổi.
Ta có công thức S =\(\frac{\pi R^2n^o}{360^o}\)
=> S = \(\frac{\pi6^2.36}{360}\)= \(3,6\pi\left(cm^2\right)\)
k cho mk nha
Hình tròn nội tiếp hình vuông có cạnh 4cm thì có R = 2cm.
Vậy diện tích hình tròn là: \(\pi2^2\)=\(4\pi\left(cm^2\right)\)
k cho mk nha
Hướng dẫn:
\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)
TH1: m - 2 = 0 <=> m = 2
khi đó phương trình trở thành: \(-3x^2+4=0\)
<=> \(x=\pm\frac{2}{\sqrt{3}}\)
TH2: m khác 2
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)
có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)
+) Phương trình (1) vô nghiệm <=> phương trình (2) vô nghiệm
<=> \(\Delta\)<0 ( tự giải ra)
+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không )
+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương
Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)
<=> m = - 2
Thay vào phương trình (2) : \(-4t^2-3.t=0\)
<=> \(t\left(4t+3\right)=0\)
<=> t = 0
=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm
+) Phương trình (1) có 2 nghiệm <=>phuowng trình (2) có 2 nghiệm trái dấu
<=> m + 2 < 0 <=> m < - 2
Kết hợp với TH1 nữa nhé!
+) Phương trình (1) có 4 nghiệm
<=> phương trình 2 có 2 nghiệm dương
<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
a) \(x_1^2+x_2^2=23\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=23\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)
\(\Leftrightarrow5^2-2\left(m+4\right)=23\)
<=> m=-3
b) \(x_1^3+x_2^3=35\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=35\)
\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=35\)
\(\Leftrightarrow5\left[5^2-3\left(m+4\right)\right]=35\)
<=> m=2
c) \(\left|x_2-x_1\right|=3\)
\(\Leftrightarrow\left(\left|x_2-x_1\right|\right)^2=3^2\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_1^2=3^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
<=> m=0
ĐK để pt có hai nghiệm phân biệt là: \(\Delta>0\Leftrightarrow25-4\left(m+4\right)>0\Leftrightarrow m< \frac{9}{4}\) ( @@)
Gọi \(x_1;x_2\) là hai nghiệm của phương trình
Theo định lí Viet ta có: \(x_1+x_2=5;x_1.x_2=m+4\)
a) \(x_1^2+x_2^2=23\)
<=> \(x_1^2+x_2^2+2x_1x_2=23+2x_1x_2\)
<=> \(\left(x_1+x_2\right)^2=23+2x_1x_2\)
=> \(25=23+2\left(m+4\right)\)
<=>m = -3 ( thỏa mãn @@)
b) \(x_1^3+x_2^3=35\)
<=> \(\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=35\)
=> \(5^3-3.5.\left(m+4\right)=35\)
<=> m = 2 ( thỏa mãn @@)
c) \(\left|x_2-x_1\right|=3\)
<=> \(\left(x_1-x_2\right)^2=9\)
<=> \(\left(x_1+x_2\right)^2-4x_1x_2=9\)
=> \(5^2-4\left(m+4\right)=9\)
<=> m = 0 ( thỏa mãn @@)
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^3+b^3+1\right)\left(\frac{1}{a}+\frac{1}{b}+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{\frac{1}{a}+\frac{1}{b}+c^2}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{b^3+c^3+1}\le\frac{\frac{1}{b}+\frac{1}{c}+a^2}{\left(a+b+c\right)^2};\frac{1}{c^3+a^3+1}\le\frac{\frac{1}{a}+\frac{1}{c}+b^2}{\left(a+b+c\right)^2}\)
Cộng 3 BĐT trên lại theo vế, ta được :
\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Ta thấy \(\frac{1}{a}=\frac{abc}{a}=bc;\frac{1}{b}=\frac{abc}{b}=ac;\frac{1}{c}=\frac{abc}{c}=ab\)
\(\Rightarrow\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\frac{2\left(ab+bc+ac\right)+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi a = b = c = 1
Cách khác anh Thanh Tùng DZ
Ta có BĐT sau:\(a^3+b^3\ge ab\left(a+b\right)\) ( khó quá chứng minh ko nổi )
\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
\(\Rightarrow VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)
Dấu "=' xảy ra tại a=b=c=1
Gọi chiều rộng mảnh vườn là x, chiều dài mảnh vườn là 3x
Diện tích mảnh vườn ban đầu là: \(3x^2\left(m^2\right)\)
Diện tích mảnh vườn sau khi tăng chiều dài và rộng lên 5 m là:
\(\left(x+5\right)\left(3x+5\right)\left(m^2\right)\)
Vì diện tích tăng thêm \(385m^2\) nên ta có phương trình:
\(\left(x+5\right)\left(3x+5\right)=3x^2+385\)
\(\Leftrightarrow3x^2+20x+25=3x^2+385\)
\(\Leftrightarrow20x=360\)
\(\Leftrightarrow x=18\)
=> Chiều rộng ban đầu là 18 m, chiều dài ban đầu là 54 m.
\(ĐKXĐ:x\ne1;-4\)
\(\frac{15}{x^2+3x-4}-1=12\left(\frac{1}{x+4}+\frac{1}{3x-3}\right)\)
\(\Leftrightarrow\frac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12.\frac{3\left(x-1\right)+x+4}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\frac{-x^2+12x+4}{\left(x-1\right)\left(x+4\right)}=\frac{4\left(3x-3+x+4\right)}{\left(x+4\right)\left(x-1\right)}\)
\(\Rightarrow-x^2+12x+4=4\left(4x+1\right)\)
\(\Leftrightarrow-x^2+12x+4-16x-4=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow-x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
\(\frac{x_2}{x_1+3}+\frac{x_1}{x_2+3}=\frac{x_2\left(x_2+3\right)+x_1\left(x_1+3\right)}{\left(x_1+3\right)\left(x_2+3\right)}=\frac{\left(x_1^2+x_2^2\right)+3\left(x_1+x_2\right)}{x_1x_2+3\left(x_1+x_2\right)+9}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+3\left(x_1+x_2\right)}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{\left(\frac{-1}{3}\right)^2-2\left(\frac{-1}{3}\right)+3\cdot\frac{1}{3}}{x-\frac{1}{3}+3\cdot\frac{1}{3}+9}=\frac{16}{87}\)
1/3 lôi đâu ra vậy ?