2x²-3x+4/x² >2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G(3;2) N(5;4) M d:x-y-2=0 d'
Ta có: \(d:x-y-2=0\Leftrightarrow\hept{\begin{cases}x=t\\y=t-2\end{cases}}\), M thuộc d suy ra \(M\left(t;t-2\right)\)
\(\Rightarrow\overrightarrow{MG}=\left(3-t;4-t\right)\Rightarrow\overrightarrow{MA}=3\overrightarrow{MG}=\left(9-3t;12-3t\right)\Rightarrow A\left(9-2t;10-2t\right)\)
\(\Rightarrow\overrightarrow{AN}=\left(2t-4;2t-6\right)\)
Vì \(\overrightarrow{AN}\perp\overrightarrow{MG}\)nên \(\overrightarrow{AN}.\overrightarrow{MG}=0\Rightarrow\left(2t-4\right)\left(3-t\right)+\left(2t-6\right)\left(4-t\right)=0\)
\(\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\Rightarrow M\left(3;1\right)\)
Đường thẳng BC: đi qua \(M\left(3;1\right)\),VTPT\(\overrightarrow{MG}\left(0;1\right)\Rightarrow BC:y-1=0.\)
Ta có: d:x−y−2=0⇔{
x=t |
y=t−2 |
, M thuộc d suy ra M(t;t−2)
⇒→MG=(3−t;4−t)⇒→MA=3→MG=(9−3t;12−3t)⇒A(9−2t;10−2t)
⇒→AN=(2t−4;2t−6)
Vì →AN⊥→MGnên →AN.→MG=0⇒(2t−4)(3−t)+(2t−6)(4−t)=0
⇔t2−6t+9=0⇔t=3⇒M(3;1)
Đường thẳng BC: đi qua M(3;1),VTPT→MG(0;1)⇒BC:y−1=0.
cái đấy ttooi giải được trông quen nhưng bạn phải để cho nó hoàn chỉnh đi
3) Ta có \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Ta dễ chứng minh được rằng \(\frac{a}{c}+\frac{c}{a}\ge2\)
Thật vậy \(\frac{a}{c}+\frac{c}{a}\ge2\)
<=> \(\frac{a^2+c^2}{ac}\ge2\)
<=> a2 + c2 \(\ge\)2ac
<=> (a - c)2 \(\ge0\)(đúng với a,c > 0)
Tương tự \(\hept{\begin{cases}\frac{b}{a}+\frac{a}{b}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)
Khi đó \(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge2+2+2=6\)(đpcm)
fan meowpeo<,siro à trả lời nhanh! không Tao Đấmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm