GIúp mình bài này plzzzz:
Tìm các số nguyên dương x,y thỏa mãn:
\(\left(x^2y+x+y\right)⋮\left(xy^2+y+8\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si,ta có :
\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)
Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)
Cộng vế theo vế, ta được :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)
Dấu "=" xảy ra khi a = b = 1
B A M K O H I h d
Gọi H là hình chiếu của O đến đường thẳng d. Khi đó : OH = h không đổi
dễ chứng minh OM \(\perp AB\)tại K
gọi giao điểm của OH với AB là I
Ta có : \(\Delta OKI~\Delta OHM\left(g.g\right)\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OK.OM=OI.OH\)
Áp dụng hệ thức lượng, ta có :
\(OB^2=OK.OM=OH.OI\Rightarrow OI=\frac{OB^2}{OH}=\frac{R^2}{h}\)không đổi ( R là bán kính đường tròn (O) )
vậy AB đi qua điểm I cố định
bài nào cx hỏi z :))
BĐT cần chứng minh tương đương với :
\(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1>4\)
Áp dụng BĐT Cô-si,
Ta có : \(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1=\frac{x^2-1}{x}+\frac{x+1}{2x}+\frac{x+1}{2x}+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)
\(\ge4\)
Dấu "=" xảy ra khi \(\frac{x^2-1}{x}=\frac{x+1}{2x}=\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)
giải đc cái trên là vô nghiệm nên dấu "=" không xảy ra
Rõ ràng cặp (x;y) =(t;0) với t \(\inℤ\)là một nghiệm của phương trình
Xét trường hợp y\(\ne\)0, khi đó ta viết được phương trình dưới dạng
\(2y^2+\left(x^2-3x\right)y+\left(3x^2+x\right)=0\)(1)
Xem đây là phương trình bậc hai ẩn y. Biệt thức \(\Delta\)của nó bằng
\(\left(x^2-3x\right)^2-8\left(3x^2+x\right)=\left(x^2-8x\right)\left(x+1\right)^2\)
Đến đây phương trình (1) có nghiệm y nguyên điều kiện cần là \(\Delta\)phải là số thích phương. Từ đây ta có các TH sau
TH1: x=-1 thay vào (1) ta tính được y=-1
TH2: x\(\ne\)-1, x2-8x=a2(a\(\in\)N) Lúc này ta có: (x-4)2-a2=16 hay [|x-4|-a][|x-4|+a]=16
Dễ dàng tìm được x=0 (tương ứng ới y=0, loại), x=8 (tương ứng với y=-10) và x=9 (tương ứng y=-6 hoặc y=-21)
Vậy tập nghiệm phương trình đã cho là: S={(t;0);(8;-10);(9;-6);(-1;-1)} (t\(\in\)Z)
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
Bài 1 :
\(x^2y+4xy+4y=162x-162\)
\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)
\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)
Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)
\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0
\(\Rightarrow x+2\in\left\{27,9,3\right\}\)
\(\Rightarrow x\in\left\{25,7,1\right\}\)
\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)
\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)
Bài 2 :
a,
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:
EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)
GH là đường trung bình trong tam giác DAC nên \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành
b,
EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD
A B C M
Tớ thử làm trường hợp tam giác ABC đều,còn tam giác thường chắc nhờ cô Linh Chi cứu
Tứ giác ABMC nội tiếp ( O ) nên theo định lý Ptoleme ta có \(BM\cdot AC+MC\cdot AB=BC\cdot AM\)
\(\Leftrightarrow BM+CM=AM\)
Theo BĐT Ba Con Sâu ta có:\(\frac{1}{MB}+\frac{1}{MC}\ge\frac{4}{MA}\ge\frac{4}{2R}=2R\)
Dấu "=" xảy ra tại M là điểm chính giữa cung BC
Bạn tham khảo sol ở đây nhé !
IMO ShortList 1998, number theory problem 1
Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )
Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!