Cho bảng ô vuông n × n, mỗi ô vuông của bảng được điền một trong ba số −1, hoặc 0, hoặc 1. Người ta lập các tổng: tổng tất cả các số trên mỗi hàng, tổng các số trên mỗi cột, và tổng các số trên hai đường chéo chính. Chứng minh rằng trong các tổng thu được luôn có hai tổng bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\times\frac{x^2+8x+16}{32}\)
ĐKXĐ : \(x\ne\pm4\)
\(=\left(\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\times\frac{\left(x+4\right)^2}{32}\)
\(=\left(\frac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\right)\times\frac{\left(x+4\right)^2}{32}\)
\(=\frac{32}{\left(x-4\right)\left(x+4\right)}\times\frac{\left(x+4\right)^2}{32}\)
\(=\frac{x+4}{x-4}\)
\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(=\left(\frac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(=\frac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}.\frac{\left(x+4\right)^2}{32}=\frac{32}{\left(x-4\right)\left(x+4\right)}.\frac{\left(x+4\right)^2}{32}=\frac{x+4}{x-4}\)
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
Xét từng mẫu của phân thức trên ta thu được :
\(xy-2x-2y+4=x\left(y-2\right)-2\left(y-2\right)=\left(x-2\right)\left(y-2\right)\)
\(yz-27-2z+4=yz-27-2z+4\)
\(zx-2z-2x+4=z\left(x-2\right)-2\left(x-2\right)=\left(z-2\right)\left(x-2\right)\)
Vậy ta có điều kiện sau : \(x\ne2;y\ne2;z\ne2\)( đpcm )