hbh ABCD. gọi E,f,G,H lần lượt là trung điểm của các cạnh AB, BC, CD, DA.chứng minh: AE=CG và tam giác AEH= tam giác CGF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(y-1\right)\)
2.
\(xy-y^2-x+y=y\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(y-1\right)\)
3.
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
4.
\(5x^2+10xy+5y^2=5\left(x^2+2xy+y^2\right)=5\left(x+y\right)^2\)
5.
\(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
6.
\(2x^3+4x^2y+2xy^2=2x\left(x^2+2xy+y^2\right)=2x\left(x+y\right)^2\)
1: \(y\left(x-y\right)-\left(x-y\right)\)
=(x-y)(y-1)
2: \(xy-y^2-x+y\)
=y(x-y)-(x-y)
=(x-y)(y-1)
3: \(5x^2+5xy-x-y\)
=5x(x+y)-(x+y)
=(x+y)(5x-1)
4: \(5x^2+10xy+5y^2=5\left(x^2+2xy+y^2\right)\)
\(=5\left(x+y\right)^2\)
5: \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)\)
\(=6\left(x+y\right)^2\)
6: \(2x^3+4x^2y+2xy^2\)
\(=2x\cdot x^2+2x\cdot2xy+2x\cdot y^2\)
\(=2x\left(x^2+2xy+y^2\right)=2x\left(x+y\right)^2\)
`a, x^2-6x+9-y^2`
`= (x-3)^2-y^2`
`=(x-3-y)(x-3+y)`
`b,x^2-4y^2+4x+4`
`= (x^2+4x+4)-(2y)^2`
`= (x+2)^2-(2y)^2`
`=(x+2-2y)(x+2+2y)`
`c, 4x^2+4x-y^2+1`
`=4x^2+4x+1-y^2`
`=(2x+1)^2-y^2`
`=(2x+1-y)(2x+1+y)`
`d, 4x^2-y^2+4y-4`
`= 4x^2-(y^2-4y+4)`
`= (2x)^2-(y-2)^2`
`= (2x-y+2)(2x+y-2)`
Xét tứ giác ABDF có
AB//DF
AF//BD
Do đó: ABDF là hình bình hành
=>AB=DF
=>DF=DC
=>D là trung điểm của FC
Xét tứ giác ADBE có
AD//BE
AE//BD
Do đó: ADBE là hình bình hành
=>AD=BE
=>BE=BC
=>B là trung điểm của EC
Ta có: ADBE là hình bình hành
=>DB=AE
ABDF là hình bình hành
=>BD=AF
Do đó: AF=AE
=>A là trung điểm của FE
Xét ΔECF có
ED,FB,CA là các đường trung tuyến
Do đó: ED,FB,CA đồng quy
g: n là số lẻ nên n=2k+1
Vì 5 là số nguyên tố nên \(n^5-n⋮5\)
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>\(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)
=>\(n^5-n⋮6\)
mà \(n^5-n⋮5;ƯCLN\left(5;6\right)=1\)
nên \(n^5-n⋮\left(5\cdot6\right)=30\)
\(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\left[\left(2k+1\right)^2+1\right]\)
\(=\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\left(4k^2+4k+2\right)\)
\(=8k\left(k+1\right)\left(2k^2+2k+1\right)\left(2k+1\right)\)
Vì k;k+1 là hai số nguyên liên tiếp
nên k(k+1) chia hết cho 2
=>\(8k\left(k+1\right)⋮16\)
=>\(n^5-n⋮16\)
mà \(n^5-n⋮30\)
nên \(n^5-n⋮BCNN\left(30;16\right)\)
=>\(n^5-n⋮240\)
f: Tích của 5 số nguyên liên tiếp sẽ chia hết cho 5!
mà \(5!=1\cdot2\cdot3\cdot4\cdot5=120\)
nên tích của 5 số nguyên liên tiếp sẽ chia hết cho 120
e: \(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
=>\(n^3+3n^2+2n⋮6\)
`a, x^8 - 1`
`=(x^4)^2 - 1^2`
`= (x^4 - 1)(x^4 + 1)`
`= (x^2 - 1)(x^2 + 1)(x^4 + 1)`
`= (x-1)(x+1)(x^2+1)(x^4+1)`
`b, x^10 - 1`
`= (x^5)^2-1^2`
`=(x^5-1)(x^5+1)`
`= (x - 1)(x^4 + x^3 + x^2 + x + 1)(x^5+1)`
f(2)=0
=>\(a\cdot2^2+b\cdot2+c=0\)
=>4a+2b+c=0
=>c=-4a-2b
=>\(f\left(x\right)=ax^2+bx-4a-2b\)
\(=a\left(x^2-4\right)+b\left(x-2\right)\)
\(=a\left(x-2\right)\left(x+2\right)+b\left(x-2\right)\)
\(=\left(x-2\right)\left(ax+2a+b\right)⋮x-2\)
a: \(\left(3x+4y\right)^2+\left(4x-3y\right)^2\)
\(=9x^2+24xy+16y^2+16x^2-24xy+9y^2\)
\(=25x^2+25y^2\)
b: \(\left(x^2+6x+9\right)-\left(25x^2-40x+16\right)\)
\(=x^2+6x+9-25x^2+40x-16\)
\(=-24x^2+46x-7\)
a, ( 3x +4y)^2 + ( 4x-3y)^2
= ( 3x + 4y )^2 - ( 3y - 4x )^2 ( hằng đẳng thức số 2)
b, (x^2 +6x+9)-(25x^2-40x+16)
= (x^2 +3x +3x +9) - (25x^2 - 20x - 20x +16)
= [(x^2 + 3x) + (3x + 9 )] - [(25x^2 -20x)+(-20x+16)]
= [x(x+3)+3(x+3)] - [5x(5x-4)-4(5x-4)]
= (x+3)(x+3) - (5x-4)(5x-4)
= (x+3)^2 - (5x-4)^2 ( hằng đẳng thức số 2)
a: Ta có: \(\widehat{OMN}=\widehat{MQP}\)(hai góc đồng vị, MN//PQ)
\(\widehat{ONM}=\widehat{NPQ}\)(hai góc đồng vị, MN//PQ)
mà \(\widehat{MQP}=\widehat{NPQ}\)(MNPQ là hình thang cân)
nên \(\widehat{OMN}=\widehat{ONM}\)
=>ΔOMN cân tại O
b: Xét ΔMNQ và ΔNMP có
NM chung
NQ=MP
MQ=NP
Do đó: ΔMNQ=ΔNMP
c: H ở đâu vậy bạn?
A, cm AE=CG
Xét hình bình hành ABCD có:
điểm E và G lần lượt là tđ của AB và CG(gt)
=> AE=1/2AB
CG=1/2DC
Mà AB=DC( tính chất hbh)
=> AE=CG (đpcm)
B, cm tam giác AEH = tam giác CGF
Xét tam giác AEH và tam giác CGF có:
- AE=CG (cmt)
- góc HAE = góc FCG ( tính chất hbh)
- AH=CF ( học sinh tự chứng minh)
=> tam giác AEH = tam giác CGF ( c.g.c)(đpcm)