Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ Ex//AB(Ex và AB nằm trên cùng mặt phẳng bờ chứa tia BE)
Ta có: Ex//AB
AB//FG
Do đó: Ex//FG
Ex//AB
=>\(\widehat{BEx}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{xEB}=49^0\)
Ta có: Ex//FG
=>\(\widehat{xEF}+\widehat{EFG}=180^0\)
=>\(\widehat{xEF}=180^0-120^0=60^0\)
\(\widehat{BEF}=\widehat{xEB}+\widehat{xEF}=49^0+60^0=109^0\)
a: Ta có: \(\widehat{xBy}=\widehat{xAz}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên By//Az
b: Ta có: \(\widehat{ABC}+\widehat{xBC}=180^0\)(hai góc kề bù)
=>\(\widehat{ABC}+60^0=180^0\)
=>\(\widehat{ABC}=120^0\)
AC là phân giác của góc zAB
=>\(\widehat{BAC}=\dfrac{\widehat{xAB}}{2}=30^0\)
Xét ΔBAC có \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^0\)
=>\(\widehat{BCA}+120^0+30^0=180^0\)
=>\(\widehat{BCA}=30^0\)
c: Ta có: BD là phân giác của góc ABC
=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=60^0\)
Xét ΔDBA có \(\widehat{DBA}+\widehat{DAB}=60^0+30^0=90^0\)
nên ΔBDA vuông tại D
=>BD\(\perp\)AC
AE//BD
=>\(\widehat{BAE}+\widehat{ABD}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{BAE}+90^0=180^0\)
=>\(\widehat{BAE}=90^0\)
Ta có: AE//BD
=>\(\widehat{AED}+\widehat{BDE}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{BDE}+55^0=180^0\)
=>\(\widehat{BDE}=125^0\)
a: a\(\perp\)HK
b\(\perp\)HK
Do đó: a//b
b: Ta có: \(\widehat{BAH}+45^0=180^0\)
=>\(\widehat{BAH}=180^0-45^0=135^0\)
Ta có: a//b
=>\(\widehat{BAH}+\widehat{ABK}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{ABK}+135^0=180^0\)
=>\(\widehat{ABK}=45^0\)
a: Ta có: \(\widehat{xOy}=\widehat{mOn}\)(hai góc đối đỉnh)
mà \(\widehat{xOy}=50^0\)
nên \(\widehat{mOn}=50^0\)
Ta có: \(\widehat{xOy}+\widehat{mOy}=180^0\)(hai góc kề bù)
=>\(\widehat{mOy}+50^0=180^0\)
=>\(\widehat{mOy}=130^0\)
Ta có: \(\widehat{xOn}=\widehat{mOy}\)(hai góc đối đỉnh)
mà \(\widehat{mOy}=130^0\)
nên \(\widehat{xOn}=130^0\)
b: Oa là phân giác của góc xOy
=>\(\widehat{yOa}=\dfrac{\widehat{xOy}}{2}=25^0\)
Ta có: Ob là phân giác của góc yOm
=>\(\widehat{yOb}=\dfrac{\widehat{yOm}}{2}=65^0\)
Ta có: \(\widehat{aOb}=\widehat{aOy}+\widehat{bOy}=25^0+65^0=90^0\)
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC tại D
XétΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{HBF}=\widehat{HBC}\)
Do đó ΔBHF=ΔBHC
c: Xét ΔBFC có
BH,CA là các đường cao
BH cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC
mà DE\(\perp\)BC
và FE,DE có điểm chung là E
nên F,E,D thẳng hàng
\(d.\dfrac{59-x}{41}+\dfrac{57-x}{43}=\dfrac{41-x}{59}+\dfrac{43-x}{57}\\ \left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)=\left(\dfrac{41-x}{59}+1\right)+\left(\dfrac{43-x}{57}+1\right)\\ \dfrac{100-x}{41}+\dfrac{100-x}{43}=\dfrac{100-x}{59}+\dfrac{100-x}{57}\\ \left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}-\dfrac{1}{59}-\dfrac{1}{57}\right)=0\\ 100-x=0\\ x=100\)
bài 4:
\(C=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{98\cdot100}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{99^2-1}\right)\)
\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{99^2}{99^2-1}\)
\(=\dfrac{2\cdot3\cdot...\cdot99}{1\cdot2\cdot3\cdot...\cdot98}\cdot\dfrac{2\cdot3\cdot...\cdot99}{3\cdot4\cdot...\cdot100}=\dfrac{99}{1}\cdot\dfrac{2}{100}=\dfrac{99}{50}\)
Bài 5:
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{204}{1}+\dfrac{203}{2}+...+\dfrac{1}{204}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\left(1+\dfrac{203}{2}\right)+\left(1+\dfrac{202}{3}\right)+...+\left(\dfrac{1}{204}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{205}{2}+\dfrac{205}{3}+...+\dfrac{205}{205}}=\dfrac{1}{205}\)
Bài 5
Ta có:
\(x^2-x-6=\left(x-3\right)\left(x+2\right)\) và đa thức chia bậc 2 nên dư là \(ax+b\)
Vậy \(f\left(x\right)=\left(x-3\right)\left(x+2\right)\left(x^2+4\right)+ax+b\)
Theo định lí Bezout, dư trong phép chia \(f\left(x\right)\) cho \(x-3\) là \(f\left(3\right)=21\) cho \(x+2\) là \(f\left(-2\right)=4\) nên ta có: \(\left\{{}\begin{matrix}3a+b=21\\-2a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)
Đa thức cần tìm là \(\left(x+2\right)\left(x-3\right)\left(x^2+4\right)+5x+6=x^4-x^3-2x^2+x-18\)
Bài 4:
\(2n^2+6n-7⋮n-2\)
=>\(2n^2-4n+10n-20+13⋮n-2\)
=>\(13⋮n-2\)
=>\(n-2\in\left\{1;-1;13;-13\right\}\)
=>\(n\in\left\{3;1;15;-11\right\}\)
Kẻ Ex // AB
\(\widehat{BEx}\) = \(\widehat{CBA}\) = 490 (đồng vị)
\(\widehat{xEF}\) + \(\widehat{EFG}\) = 1800 (hai góc trong cùng phía)
⇒ \(\widehat{xEF}\) = 1800 - \(\widehat{EFG}\) = 1800 - 1200 = 600
\(\widehat{BEF}\) = \(\widehat{BEx}\) + \(\widehat{xEF}\) = 490 + 600 = 1090
Kết luận: góc BEF là 1090
Kẻ Ex//AB(Ex và AB nằm trên cùng mặt phẳng bờ chứa tia BE)
Ta có: Ex//AB
AB//FG
Do đó: Ex//FG
Ex//AB
=>\(\widehat{BEx}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{xEB}=49^0\)
Ta có: Ex//FG
=>\(\widehat{xEF}+\widehat{EFG}=180^0\)
=>\(\widehat{xEF}=180^0-120^0=60^0\)
\(\widehat{BEF}=\widehat{xEB}+\widehat{xEF}=49^0+60^0=109^0\)