K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔFDM có

FH là đường cao

FH là đường trung tuyến

Do đó: ΔFDM cân tại F

=>FM=FD

b: Xét ΔIDM có

IH là đường cao

IH là đường trung tuyến

Do đó: ΔIDM cân tại I

ΔIDM cân tại I

mà IH là đường cao

nên IH là phân giác của góc DIM

c: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

=>\(HE=HF=\dfrac{EF}{2}=\dfrac{FI}{2}\)

=>IF=2/3IH

Xét ΔIDM có

IH là đường trung tuyến

\(IF=\dfrac{2}{3}IH\)

Do đó: F là trọng tâm của ΔIDM

=>MF cắt DI tại trung điểm của DI

=>N là trung điểm của DI

Xét ΔDMI có

H,N lần lượt là trung điểm của DM,DI

=>HN là đường trung bình của ΔDMI

=>HN//MI

 

15 tháng 8

a; |6\(x\) + 22| + (y - 21)2 = 0

    |6\(x+22\) | ≥ 0; (y - 21)2 ≥ 0

    |6\(x\) + 22| + (y - 21)2 = 0 ⇔ \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}6x=-22\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{22}{6}\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)

Vậy (\(x\); y) = (- \(\dfrac{11}{3}\); 21)

 

 

 

 

15 tháng 8

b; 

A = |\(\dfrac{4}{3}\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\)

A = |\(\dfrac{16}{12}\) - \(\dfrac{3}{12}\)| - \(\dfrac{2}{11}\)

A = | \(\dfrac{13}{12}\)| - \(\dfrac{2}{11}\)

A = \(\dfrac{13}{12}\) - \(\dfrac{2}{11}\)

A = \(\dfrac{143}{132}\)  - \(\dfrac{24}{132}\)

A = \(\dfrac{119}{132}\)

 

ĐKXĐ: x<>-1

\(C=\dfrac{x^2-1}{x+1}=\dfrac{\left(x-1\right)\cdot\left(x+1\right)}{x+1}=x-1\)

=>Khi \(x\in Z\backslash\left\{-1\right\}\) thì C là số nguyên

14 tháng 8

Sửa đề: `S = 1/(2^2) - 1/(2^4) + 1/(2^6) - ... - 1/(2^2020) `

`=> 2^2 S = 1 - 1/(2^2) + 1/(2^4) - ... - 1/(2^2018) `

`=> 4S + S = (1 - 1/(2^2) + 1/(2^4) - ... - 1/(2^2018) ) + ( 1/(2^2) - 1/(2^4) + 1/(2^6) - ... - 1/(2^2020) )`

`=> 5S = 1 - 1/(2^2020) < 1`

`=> S  < 1/5 `

`=> S < 0,2 (đpcm)`

14 tháng 8

`(8-9/4 +2/7)-(6 -3/7 +5/4)-(3+ 2/4 -9/7)`

`= 8-9/4 +2/7-6 +3/7 -5/4 -3- 2/4 +9/7`

`= (8-6-3)-(9/4+5/4 + 2/4) +(2/7 +3/7   +9/7)`

`= -1 - 16/4 + 14/7`

`= -1 -4 + 2`

`= -3`

a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{BAC}+60^0+30^0=180^0\)

=>\(\widehat{BAC}=90^0\)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=45^0\)

Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)(ΔBHA vuông tại H)

=>\(\widehat{BAH}=90^0-60^0=30^0\)

Vì \(\widehat{BAH}< \widehat{BAD}\)

nên tia AH nằm giữa hai tia AB và AD

=>\(\widehat{BAH}+\widehat{HAD}=\widehat{BAD}\)

=>\(\widehat{HAD}=45^0-30^0=15^0\)

ΔAHD vuông tại H
=>\(\widehat{HAD}+\widehat{HDA}=90^0\)

=>\(\widehat{HDA}=90^0-15^0=75^0\)

 

\(5^{n+2}+3^{n+2}-5^n-3^n\)

\(=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)\)

\(=5^n\cdot24+3^{n-1}\cdot3\cdot8=24\left(5^n+3^{n-1}\right)⋮24\)

13 tháng 8

Bài 5: 

\(a,\dfrac{11}{24}-\dfrac{5}{41}+\dfrac{13}{24}+0,5-\dfrac{36}{41}\\ =\left(\dfrac{11}{24}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\\ =\dfrac{24}{24}-\dfrac{41}{41}+\dfrac{1}{2}\\ =1-1+\dfrac{1}{2}\\=\dfrac{1}{2}\\ b,16\cdot\dfrac{3}{5}\cdot\dfrac{-1}{3}-13\dfrac{3}{5}\cdot\dfrac{-1}{3}\\ =\dfrac{-1}{3}\cdot\left(16+\dfrac{3}{5}-13-\dfrac{3}{5}\right)\\ =\dfrac{-1}{3}\cdot3\\ =-1\)

Bài 2:

\(\left(\dfrac{-4}{7}\right)^{25}:\left(\dfrac{-4}{7}\right)^{23}\\ =\left(\dfrac{-4}{7}\right)^{25-23}\\ =\left(\dfrac{-4}{7}\right)^2\\ =\dfrac{16}{49}\\ b,\dfrac{15}{60}+\dfrac{12}{19}+\dfrac{2}{9}-\dfrac{10}{8}+\dfrac{-31}{19}\\ =\dfrac{1}{4}+\left(\dfrac{12}{19}-\dfrac{31}{19}\right)+\dfrac{2}{9}-\dfrac{5}{4}\\ =\left(\dfrac{1}{4}-\dfrac{5}{4}\right)+\dfrac{-19}{19}+\dfrac{2}{9}\\ =-1-1+\dfrac{2}{9}\\ =\dfrac{2}{9}-2\\ =-\dfrac{16}{9}\)