biển số xe gồm 4 số, vậy có thể đăng ký được tối đa bao nhiêu biển số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4b.
Gọi O là giao điểm AC và BD \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)
\(T=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)^2\)
\(=3MO^2+\overrightarrow{MO}.\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\overrightarrow{OA}.\overrightarrow{OC}+OB^2+OD^2+2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OD}\right)\)
\(=3MO^2-OA^2+OB^2+OD^2\)
\(=3MO^2+OA^2\) (do \(OA=OB=OD\) theo t/c hình chữ nhật)
OA cố định nên T min khi \(MO^2\) min
\(\Rightarrow M\) là hình chiếu vuông góc của O lên cạnh hình chữ nhật
Mà \(AB>AD\)
\(\Rightarrow M\) là hình chiếu vuông góc của O lên AB hoặc AD
\(\Rightarrow M\) là trung điểm AB hoặc AD
ĐKXĐ: \(x\ge-\dfrac{4}{3}\)
\(\left(x^2+6x+13\right)\left(\dfrac{9\left(5x+9\right)-4\left(3x+4\right)}{3\sqrt{5x+9}+2\sqrt{3x+4}}\right)=33x+65\)
\(\Leftrightarrow\dfrac{\left(x^2+6x+9\right)\left(33x+65\right)}{3\sqrt{5x+9}+2\sqrt{3x+4}}=33x+65\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{65}{33}< -\dfrac{4}{3}\left(ktm\right)\\x^2+6x+9=3\sqrt{5x+9}+2\sqrt{3x+4}\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow x^2+x+3\left(x+3-\sqrt{5x+9}\right)+2\left(x+2-\sqrt{3x+4}\right)=0\)
\(\Leftrightarrow x^2+x+\dfrac{3\left(x^2+x\right)}{x+3+\sqrt{5x+9}}+\dfrac{2\left(x^2+x\right)}{x+2+\sqrt{3x+4}}=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(1+\dfrac{3}{x+3+\sqrt{5x+9}}+\dfrac{2}{x+2+\sqrt{3x+4}}\right)=0\)
\(\Leftrightarrow x^2+x=0\) (ngoặc phía sau luôn dương khi \(x\ge-\dfrac{4}{3}\))
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 1:
PT $\Leftrightarrow 3x^2+6x+3=2x^2-5x+3$
$\Leftrightarrow x^2+11x=0$
$\Leftrightarrow x(x+11)=0$
$\Leftrightarrow x=0$ hoặc $x+11=0$
$\Leftrightarrow x=0$ hoặc $x=-11$
Thử lại thấy đều thỏa mãn.
Câu 2:
PT $\Leftrightarrow 2x^2-3x+1=x^2+2x-3$ (bình phương 2 vế)
$\Leftrightarrow x^2-5x+4=0$
$\Leftrightarrow (x-1)(x-4)=0$
$\Leftrightarrow x-1=0$ hoặc $x-4=0$
$\Leftrightarrow x=1$ hoặc $x=4$
Thử lại thấy đều thỏa mãn.
Vậy..........
Bạn xem lại đề bài nhé, vì thông thường phương trình hàm có 2 biến \(x,y\) chỉ có 1 phương trình thôi.
Hơn nữa nếu đề bài như thế này thì giải rất dễ. Từ pt thứ hai cho \(x=c\) với c là hằng số bất kì thì thu được \(f\left(y\right)=2y+C,\forall x,y\inℝ^+\left(C=-f\left(c\right)\right)\) là hàm số bậc nhất. Thay lại vào pt đầu tiên thì thấy vô lí.
Nên mình nghĩ đề bài có thể là
"\(f\left(x+3f\left(y\right)\right)=f\left(x\right)+f\left(y\right)\pm2y,\forall x,y\inℝ^+\)
Theo định lý Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3b}{2a}\\x_1x_2=\dfrac{2c}{a}\end{matrix}\right.\)
Do đó \(T=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(-\dfrac{3b}{2a}\right)^2-4.\dfrac{2c}{a}}\)
\(=\sqrt{\left(\dfrac{3b}{2a}\right)^2-\dfrac{8c}{a}}\)
Ta có \(a+9b+24c=0\)
\(\Leftrightarrow1+\dfrac{9b}{a}+\dfrac{24c}{a}=0\)
\(\Leftrightarrow\dfrac{24c}{a}=-\dfrac{9b}{a}-1\)
\(\Leftrightarrow\dfrac{8c}{a}=-\dfrac{3b}{a}-\dfrac{1}{3}\)
Do đó \(T=\sqrt{\left(\dfrac{3b}{2a}\right)^2+\dfrac{3b}{a}+\dfrac{1}{3}}\) \(\ge0\)
\(T=\sqrt{\left(\dfrac{3b}{2a}\right)^2+2.\dfrac{3b}{2a}+1-\dfrac{2}{3}}\)
\(T=\sqrt{\left(\dfrac{3b}{2a}+1\right)^2-\dfrac{2}{3}}\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\dfrac{3b}{2a}+1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow...\)
Vậy ...
Đặt \(BC=x\left(cm\right)\) (ĐK: \(x>9\))
\(\Rightarrow AC=BC-9=x-9\left(cm\right)\)
Theo định lý Py-ta-go ta có:
\(BC^2=AC^2+AB^2\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{x^2-\left(x-9\right)^2}=\sqrt{x^2-\left(x^2-18x+81\right)}\)
\(\Rightarrow AB=\sqrt{18x-81}\)
Theo đề bài: \(C_{ABC}=70\left(cm\right)\)
\(\Rightarrow AB+AC+BC=70\)
\(\Rightarrow\sqrt{18x-81}+\left(x-9\right)+x=70\)
\(\Rightarrow\sqrt{18x-81}=79-2x\left(x\le\dfrac{79}{2}\right)\)
\(\Rightarrow18x-81=\left(79-2x\right)^2\)
\(\Rightarrow18x-81=6241-316x+4x^2\)
\(\Rightarrow4x^2-334x+6322=0\)
\(\Delta=\left(-334\right)^2-4\cdot4\cdot6322=10404>0\)
\(x_1=\dfrac{334+\sqrt{10404}}{2\cdot4}=\dfrac{109}{2}>\dfrac{79}{2}\left(ktm\right)\)
\(x_2=\dfrac{334-\sqrt{10404}}{2\cdot4}=29\left(tm\right)\)
\(\Rightarrow BC=29\left(cm\right)\)
\(AC=29-9=20\left(cm\right)\)
\(AB=\sqrt{18\cdot29-81}=21\left(cm\right)\)
Vậy: ...
Vì sao trong trường hợp cả 2024 câu đã là đúng thì chính chúng lại là những câu sai ạ? Nếu vậy thì nó vô lý rồi ạ, vì một mệnh đề không thể vừa đúng vừa sai được.
Ta loại câu số 2024 vì nếu đây là khẳng định đúng thì số khẳng định sai nhiều nhất chỉ là 2023, không thể có tới 2024 khẳng định sai.
Xét câu 1: nếu có ít nhất 1 câu khẳng định sai thì khẳng định sai là câu 2024. Vậy thì câu 2 sẽ đúng, tuy nhiên câu thứ 2 mâu thuẫn với câu 1, vậy câu 1 sai.
Xét câu \(n\left(1< n< 2023\right)\), nếu có ít nhất n câu khẳng định sai thì khẳng định sai là câu \(1,...,n-1,2024\), Vậy thì câu \(n+1\) sẽ đúng, tuy nhiên câu thứ \(n+1\) mâu thuẫn với câu n, vậy câu n sai.
Sau khi loại từ câu 1 tới 2022 và câu 2024. Ta thấy có 2023 khẳng định sai, vậy câu 2023 đúng.
Một cách "đơn giản" và "ngây thơ", ta thấy mỗi chữ số đều có 10 cách chọn (từ 0 đến 9) nên có tất cả \(10^4=10000\) biển số.
Tuy nhiên, ngoài lề một chút thì nếu theo đúng luật giao thông, kể cả mã tỉnh (từ 11 đến 99 - có 89 mã; và 2 kí tự seri, mỗi kí tự có thể là một trong 20 chữ cái in hoa sau: A, B, C, D, E, F, G, H, K, L, M, N, P, S, T, U, V, X, Y, Z. Chưa kể là còn có 4 loại màu biển số xe (trắng, xanh, đỏ, vàng) và mỗi loại biển số có quy định tạo biển số xe khác nhau nên lúc này số biển số sẽ tăng lên gấp rất nhiều lần, lưu ý là không tồn tại biển số xe 0000 nếu đăng ký đúng pháp luật)