Cho tam giác ABC vuông tại A đường cao AH
a) AB=12cm,BC=20cm.Tính AC, AH, góc ABC(làm tròn đến độ)
B) kẻ HM vuông góc AB tại M, HN vuông góc AC tại N. CM: AN. NC=AC^2 -HC^2
c) CM: AH= MN, CM: AM. MB+AN. NC=AH^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\) \(=\dfrac{\left(1+\dfrac{1}{xy}\right)^2}{2}\)
Lại có \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow B\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Vậy GTNN của B là \(\dfrac{25}{2}\) khi \(x=y=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si:
$t(3-t)\leq \left(\frac{t+3-t}{2}\right)^2=\frac{9}{4}$
$\Rightarrow A\geq \frac{4(4t^2+9)}{9t}$
$=\frac{16t^2+36}{9t}=\frac{16t}{9}+\frac{4}{t}$
$\geq 2\sqrt{\frac{16t}{9}.\frac{4}{t}}=\frac{16}{3}$ (tiếp tục áp dụng BĐT Cô-si)
Vậy $A_{\min}=\frac{16}{3}$. Giá trị này đạt được khi $x=\frac{3}{2}$
Lời giải:
a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$
$\sin B = \frac{AC}{BC}=\frac{4}{5}$
$\tan B = \frac{AC}{AB}=\frac{4}{3}$
$\cot B = \frac{AB}{AC}=\frac{3}{4}$
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
$\sin C = \frac{AB}{BC}=\frac{5}{13}$
$\cos C=\frac{AC}{BC}=\frac{12}{13}$
$\tan C=\frac{AB}{AC}=\frac{5}{12}$
$\cot C=\frac{AC}{AB}=\frac{12}{5}$
Ta có điều kiện phương trình: 2≤x≤4
Xét:\(x^2-5x-1\) Phải lớn hơn 0
nên với 2≤x≤4 thì ta có vùng giá trị của \(x^2-5x-1\)
\(2^2-5.2-1\le x^2-5x-1\le4^2-5.4-1\\ \Leftrightarrow-7\le x^2-5-1\le-5\)
Vậy Phương trình vô nghiệm