Cho đường tròn (O). Điểm C ngoài đc tròn kẻ 2 tiếp tuyến CA và CB. Từ M trong cung nhỏ AB kẻ tiếp tuyến vs đường tròn (O) cắt CA và CB lần lượt ở E và F. Giao điểm của OE và AB là K. CMR: FK vuông góc vs OE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số h/s dự thi của cả 2 trường là 420:84%=500 (h/s)
Gọi số h/s dự thi của trường A và B lần lượt là a,b (h/s) (a,b nguyên dương và 0<a,b<500)
=> a+b=500
Tỉ lệ đỗ của trường A là 80% nên số h/s thi đỗ của trường A là 80%.a=8/10.a
Tương tự số h/s thi đỗ của trường B là 9/10.b
Mà 2 trường có 420 h/s đỗ => 8/10.a+9/10.b=420
Giải hệ \(\hept{\begin{cases}a+b=500\\\frac{8}{10}a+\frac{9}{10}b=420\end{cases}}\)được a=300,b=200
a.
+ Trong $\Delta ABC$, đường cao $AH$ và $CE$ cắt nhau tại $H$
$\Rightarrow H$ là trực tâm của $\Delta ABC$.
$\Rightarrow BH \perp AC$.
+ Ta có $\widehat{HDB} = 90^{\circ}$ ($AD \perp BC$) và
$\widehat{HEB} = 90^{\circ}$ ($CE \perp AB$)
$\Rightarrow \widehat{HDB} + \widehat{HEB} = 180^{\circ}$.
Mà trong tứ giác $HEBD$, $\widehat{HDB}$ và $\widehat{HEB}$ là hai góc đối nhau.
Suy ra $HEBD$ là tứ giác nội tiếp.
b.
Xét $\Delta MBA$ và $\Delta MAC$ có:
$\widehat{AMC}$ chung
$\widehat{MAB} = \widehat{MCA}$ (cùng chắn cung $AB$)
$\Rightarrow \Delta MBA \sim \Delta MAC$ (g.g)
$\Rightarrow \dfrac{MB}{MA} = \dfrac{MA}{MC}$
$\Rightarrow MA^2 = MB.MC$.
c.
G E
Kẻ đường kính $AG$ và $AD$ cắt đường tròn tại điểm thứ hai là $E$.
Ta có $\widehat{BCE} = \widehat{BAE}$ (cùng chắn cung BE$)
Mà $\widehat{BAE} = \widehat{DCE}$ (cùng phụ với $\widehat{ABC}$)
$\Rightarrow \widehat{BCE} = \widehat{DCE}$
Xét $\Delta CHD$ và $\Delta CED$ có:
$\widehat{BCE} = \widehat{DCE}$
$CD$ chung
$\widehat{CDH} = \widehat{CDE} = 90^{\circ}$
$\Rightarrow \Delta CHD = \Delta CED$ (g.c.g)
$\Rightarrow \widehat{HCD} = \widehat{ECD}$ hay $CD$ vừa là đường cao, vừa là phân giác của $\Delta CHE$.
$\Rightarrow \Delta CHE$ cân tại $C \Rightarrow CD$ là trung trực của đoạn thẳng $HE$.
Suy ra $NH = NE$ (do $N$ thuộc $CD$) (1)
Chứng minh $CBEG$ là hình thang cân
Vì $\widehat{AEG} = 90^{\circ}$ nên $AE \perp GE$
Mà $AE \perp BC$ nên $CB // EG$
Suy ra $CBEG$ là hình thang mà hình thang nội tiếp đường tròn $(O)$ nên $CBEG$ là hình thang cân.
$N$ là trung điểm $BC$ nên $\Delta NCG = \Delta NBE$ (c.g.c)
Suy ra $NE = NG$ (2)
Ta có $\widehat{NFG } = 90^{\circ} \Rightarrow NG>NF$ (3)
Từ (1), (2) và (3) suy ra $NH > NF$.
\(A=\frac{m^2+5m+3}{m^2+m+1}\)
\(\Leftrightarrow A\cdot m^2+A\cdot m+A=m^2+5m+3\)
\(m^2\left(A-1\right)+m\left(A-5\right)+\left(A-3\right)=0\)
Xét \(\Delta=\left(A-5\right)^2-4\left(A-3\right)\left(A-1\right)\)
\(=A^2-10A+25-4\left(A^2-4A+3\right)\)
\(=-3A^2+6A+12\)
Điều kiện có nghiệm là \(\Delta\ge0\) bám vào đk mà đánh giá tiếp