K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

Gọi chiều dài là a, chiều rộng là b. Ta có :
a + 5 = 4(b - 3)
=> a + 5 = 4b - 12
=> 4b - a = 12 + 5 = 17
Mà 2a + 2b = 46 => a + b = 23
Cộng hai pt trên => 4b - a + a + b = 17 + 23
=> 5b = 40
=> b = 8 (m)
=> a = 23 - 8 = 15 (m)
Vậy kích thước của khu vườn là 15m x 8m.

k mik nha

7 tháng 5 2020

Đáp án:

Khu vườn hình chữ nhật có chiều dài là 15m, chiều rộng là 8m, diện tích là 120 m2m2

Lời giải:

Gọi x là chiều dài khu vườn (x>0) và

y là chiều rộng khu vườn (y>0)

Một khu vườn hình chữ nhật có chu vi 46m thì (x+y).2=46

Nếu tăng chiều dài 5m giảm chiều rộng 3m thì chiều dài gấp 4 lần chiều rộng thì (x+5)=4.(y-3)

Từ đó ta có hpt:

{(x+y).2=46(x+5)=4.(y−3)⇔{x+y=23x−4y=−17{(x+y).2=46(x+5)=4.(y−3)⇔{x+y=23x−4y=−17

⇔{x+y=23x=4y−17⇔{4y−17+y=23x=4y−17⇔{x+y=23x=4y−17⇔{4y−17+y=23x=4y−17

⇔⎧⎨⎩y=23+175=8x=4.8−17=15⇔{y=23+175=8x=4.8−17=15

Vậy chiều dài khu vườn là 15m, chiều rộng khu vườn là 8m, diện tích khu vườn là 15.8 = 120 m2

Nếu đúng nhớ vote cho mình nhen !

chức bạn học tốt!

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
7 tháng 5 2020

a)

Tứ giác AEMC nội tiếp vì có 2 đối nhau góc ^EAC và ^EMC vuông.

Tứ giác BCMF nội tiếp vì có 2 đối nhau góc ^FBC và ^FMC vuông.

b)

^AMB=90º (góc nội tiếp (O) nhìn đường kính AB)

AEMC nội tiếp =>^MEC=^MAC.

BCMF nội tiếp =>^MFC=^MBC.

=>∆AMB~∆ECF (g.g) =>^ECF=^AMC =>ECF vuông tại C.