thpt
1 trên x - 2 - 1 trên x + 2 + 4x - x2 trên 4 - x2
tick ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x^2-1}{x^2-xy}+\frac{1-2y^2}{x^2-xy}=\frac{2x^2-1+1-2y^2}{x^2-xy}\)
\(=\frac{2x^2-2y^2}{x^2-xy}=\frac{2\left(x^2-y^2\right)}{x\left(x-y\right)}\)
\(=\frac{2\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)}=\frac{2\left(x+y\right)}{x}\)
Sửa đề : \(\frac{2x^2-1}{x^2-xy}+\frac{1-2y^2}{x^2-xy}\)
\(=\frac{2x^2-1+1-2y^2}{x^2-xy}=\frac{2x^2-2y^2}{x\left(x-y\right)}=\frac{2\left(x^2-y^2\right)}{x\left(x-y\right)}\)
\(=\frac{2\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)}=\frac{2\left(x+y\right)}{x}\)
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(x^3+x^2-9x-9=0\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-9\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=-1;\pm3\)
c, \(x^2-3x-10=0\Leftrightarrow x^2+2x-5x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=5;-2\)
a, \(20x^2y^3-15xy^2=5xy^2\left(4xy-3\right)\)
b, \(3x+3y-x^2-xy=3\left(x+y\right)-x\left(x+y\right)=\left(3-x\right)\left(x+y\right)\)
c, \(9-x^2-y^2+2xy=9-\left(x^2+y^2-2xy\right)\)
\(=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
20x2y3 - 15xy2 = 5xy2( 4xy - 3 )
3x + 3y - x2 - xy = ( 3x + 3y ) - ( x2 + xy ) = 3( x + y ) - x( x + y ) = ( x + y )( 3 - x )
9 - x2 - y2 + 2xy = 9 - ( x2 - 2xy + y2 ) = 32 - ( x - y )2 = ( 3 - x + y )( 3 + x - y )
Đặt f(x) = 2x2 + ax + 1
g(x) = x - 3
f(x) chia g(x) dư 4
=> f(x) - 4 chia hết cho g(x)
<=> 2x2 + ax + 1 - 4 chia hết cho x - 3
<=> 2x2 + ax - 3 chia hết cho x - 3
Áp dụng định lí Bézout ta có :
f(x) - 4 chia hết cho g(x) <=> f(3) - 4 = 0
<=> 18 + 3a - 3 = 0
<=> 3a + 15 = 0
<=> 3a = -15
<=> a = -5
Vậy a = -5
Sửa đề : \(x^2-xz-9y^2+3yz=\left(x^2-9y^2\right)+\left(-xz+3yz\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left[\left(x+3y\right)-z\right]=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{4x-x^2}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2-4x+x^2}{\left(x+2\right)\left(x-2\right)}=\frac{-4x+4+x^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x-2}{x+2}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{4x-x^2}{4-x^2}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{x^2-4}\)
\(=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2-x+2+x^2-4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)